
ZNCache - ZNS Workload Analysis
John Ramsden

University of British Columbia
Vancouver, Canada

Sam Cheng
University of British Columbia

Vancouver, Canada

ABSTRACT
Modern cloud-based environments commonly use remote
data stores such as S3, but they typically suffer from high
latency and high cost of I/O. Although RAM-based caches
can mitigate this problem by reducing requests to the remote
data stores, they also come with a very high cost. Alter-
natively, users can deploy block-interface SSDs, but these
devices exhibit high tail latency and unpredictability due to
garbage collection (GC). Zoned Namespace (ZNS) SSDs offer
more consistent performance and lower tail latencies but
impose usage constraints. In this paper, we evaluate vari-
ous workloads and adapt traditional caches to comply with
ZNS semantics. We study if and when ZNS SSDs outper-
form block-interface SSDs and where block-interface SSDs
remain sufficient or preferred, particularly in the context of
cache workloads. With these insights, software developers
can make more informed decisions about which SSD type to
use based on specific application needs.

1 INTRODUCTION
Users frequently rely on cloud-based remote storage due to
its high availability, scalability, security, and redundancy;
however, it comes with a significant cost (typically $0.005
per 1,000 requests on S3) which add up during high usage
scenarios [1]. Remote access incurs significant latency (e.g.,
5.4s for 512MiB; see Appendix A). To mitigate this issue, sys-
tems use caching to reduce the number of requests. Typically,
administrators provision large amounts of RAM for caches,
which can become prohibitively expensive as datasets grow.
As an alternative, SSD-based caches offer ample storage at a
relatively lower cost, with reasonable performance. However,
SSDs and other flash-based media have inherent limitations.
Flash-based media do not support in-place writes. The

devices instead write new data to new locations and mark
stale data, such as deleted or modified pages, as invalid. Over
time, garbage collection (GC) reclaims invalidated blocks by
clearing large areas of flash called erase blocks (smallest unit
of physical erasure), which operate at the granularity of sev-
eral smaller flash pages (smallest unit for physical writes) [7].
This process can cause many additional writes, which lead
to performance degradation, write amplification (WA), and
ultimately high tail latency.

An emerging alternative is the Zoned Namespaces (ZNS)
SSD, which eliminates device-side GC. ZNS SSDs maintain
lower read latency and higher write throughput compared to

conventional SSDs because device-side GC no longer occurs
(Fig. 1). However, the interface introduces additional com-
plexity for programmers. ZNS enforces sequential writes to
zones, predefined regions which can only be erased entirely.
This shifts management complexity to software.

Figure 1: Throughput of a multi-threaded write work-
load that overwrites usable SSD capacity four times [2].

Handling these restrictions in the context of caching presents
significant challenges, particularly during eviction. The pri-
mary issue is the difference between the granularity at which
data can be erased and that at which it can be written. For
example, if a zone contains 20 objects, and 2 of them need
to be evicted, those 2 objects cannot simply be erased and
written back over. The entire zone must be erased, and the
valid data must be migrated elsewhere, or written back to
the erased zone without the invalidated data. This situation
can lead to host-side GC becoming necessary on ZNS SSDs.
This situation is further explored in §3.

We investigate the following core question: Under which
workloads can ZNS SSDs outperform conventional block-interface
SSDs, and under what conditions do block-interface SSDs per-
form the same or better? Since adopting ZNS incurs costs,
either through hardware investment or software adaptation,
we aim to establish decision criteria for when transitioning
to ZNS SSDs is beneficial and when it is inappropriate or
unneeded1.

Our findings demonstrate that under the right conditions
where device-side GC occurs, block-interface SSDs can suf-
fer a severe performance degradation of up to 67.75% in
increased tail latency, and 568.2% in reduced throughput,
while ZNS SSDs retain consistent performance.
1We are answering this question from a performance perspective and not a
cost per gigabyte, or cost of software rebuild perspective even though ZNS
drives have the potential to lower cost per gigabyte pricing when built at
scale.

2025-04-21 22:59. Page 1 of 1–22.

John Ramsden and Sam Cheng

2 BACKGROUND AND RELATEDWORK
Flash-based storage systems are commonly used as the back-
ing store in persistent caches because they offer higher through-
put and lower latency compared to HDDs or network storage.
For example, MongoDB is exploring the idea of using local
disk-based caches [14] in order to mitigate costly accesses,
motivating the need for low-latency access in production
workloads [16]. Compared to DRAM caches, flash-based stor-
age is slower, but offers lower costs and data persistence in
the event of power loss [11].

ZNS SSDs directly avoid the overhead of the block-interface
[2]. The system must write to flash-based media sequentially,
which is reset at the granularity of erase blocks. ZNS ex-
poses this complexity to the programmer - random writes
are forbidden and zones are aligned to the erase blocks of the
underlying flash drive. In return, performance remains con-
sistent even when nearing drive capacity (Fig. 1). In addition,
since GC is no longer performed, ZNS drives expose more us-
able storage capacity due to the absence of over-provisioning
previously required for GC.
Existing caching implementations can also map well to

ZNS SSDs. Many cache engines group multiple cache en-
tries into larger “regions” before flushing to disk, in order to
improve I/O patterns which reduce GC and increase through-
put [3, 15]. These regions can then be placed into zones ex-
actly, allowing the cache to support ZNS SSDs transparently.

Yang et al. confirmed the viability of ZNS SSDs in caching
workloads and examined various approaches for storing data
in ZNS SSDs [15]. The approaches utilized CacheLib as the
caching engine, which writes fixed-size regions to the cache.
One approach mapped zones to regions 1-to-1. This enforced
sequential writes to the disk, which allowed zero GC, but
meant that some valid cache entries may be discarded as the
entire zone must be evicted. The other approach mapped
multiple regions to a single zone, allowing more granular
eviction. To support this, the cache must perform host-side
GC, which incurs extra complexity. However, GC policies can
be co-designed along with the cache’s eviction algorithms,
and by doing so, the authors observed lower tail latencies
and higher throughput compared to traditional SSDs. Simi-
larly, Lv et al. [8] present a case study and ZNS aware cache
system “ZonedStore”, demonstrating another design for a
ZNS backed cache. However, while both papers built a cache
over ZNS and demonstrated simple policies, the workloads
were limited, and did not sufficiently answer how different
parameters for the cache affected performance or whether
or not device-side GC occurred. Additionally, in the former
paper, cache size was very small and not representative of
workloads with large working sets, typical of SSD-based
caches. We seek to answer these questions by exploring a
wider range of workloads and parameters and examining
their effects.

3 METHODOLOGY
We designed and implemented ZNCache, a concurrent key-
value cache that fetches and caches data from a remote data
store2. For the purposes of the project, we made several sim-
plifications: (1) there is no persistence between cache restarts,
and (2) we do not cache any actual real data. We simulate
actual data stored in the cache with random bytes, and refer-
ence them with an integer key. To perform a simulated fetch
with latency from the remote store due to a cache miss, we
add a constant request time (measured from fetch requests
from S3, averaged over 100 runs, see Appendix A). These
simplifications remove significant cache functionality, but
they are justified since our goal is to study ZNS vs block-
interface SSD performance - not to build a full production
system.
To distinguish between the types of blocks (erase blocks,

unit of I/O, and blocks as the unit of caching), we refer to
the unit of caching as a “chunk”. Based on the use-case, it is
important to be able to have a variable chunk size (variable
at initialization not runtime). Larger chunks are beneficial
in certain workloads, or to limit access to remote storage for
cost, and smaller chunks perform better on workloads where
there is less eviction occurring [10]. Our implementation
will make this modifiable so we can evaluate the effects. The
intention is to cover a broad range of workloads, in order to
get a characteristic of how the different SSD types behave
under various scenarios.

ZNCache supports two backends: block-interface SSD and
ZNS SSD. The codebase is functionally identical for both
backends, with slight differences mostly consisting of addi-
tional operations for the ZNS backend that are required to
execute ZNS operations such as zone erase. Both backends
operate on zones. Although block-interface SSDs do not have
the same concept of a zone in firmware, we logically break
up the disk into regions on the block-interface SSD, leading
to functionally identical behavior between the two backends.
When we refer to zones in the context of our implementation,
they may be ZNS zones or regions on block-interface SSDs
representing zones. This allows us to explore performance on
an even playing field, with a common codebase. The concept
of splitting block-interface SSDs into regions is not a new
one, and is a common methodology employed by caching
systems [4].

The structure of our caching system is divided into three
logical components. Cachemap (§3.1) consists of a hash-table
that maps data IDs to the address of cached chunks on disk.
2We have identified that there are plenty of improvements we can make to
performance, both in reducing lock contention, and decoupling workers
that receive requests from workers that execute them. We leave this to
future work.

2025-04-21 22:59. Page 2 of 1–22.

ZNCache - ZNS Workload Analysis

Zone State Manager (ZSM) (§3.2) keeps track of the state of
individual zones. Eviction Policy (§3.3) selects an eviction
strategy to use when the cache is full. A thread pool spawns
cache worker threads that service requests retrieved from a
pre-generated workload file and operate on the cache con-
currently. Fig. 2 describes the high-level control flow for a
worker thread serving a request3.

Get single request from workload file

Data in Cachemap?

Get location of
data and read

Get new disk
location from ZSM

Read from remote store,
write data into cache &

update ZSM and Cachemap

Update eviction policy

Yes No

Figure 2: Control flow of a worker thread.

Eviction is controlled by a single thread that is periodically
woken up to evaluate whether the cache needs to perform
eviction. Eviction is triggered when cache capacity falls be-
low a tunable threshold. Foreground eviction occurs when
background eviction fails to keep up, leaving no available
space4.

3.1 Cachemap
Cachemap maps keys to their location on disk. The map is
implemented as a hash table behind a lock (data ID to disk
address)5, with an additional map from zones to entries in
the table for eviction.

A thread serving a request first looks up whether the data
exists on disk in Cachemap. If it does, then the thread directly
reads from the disk. If not, then the thread must read data
from the “remote store”, and write the data to the disk. Before
unlocking, a temporary condition variable representing a
write in-progress fills the map entry. New threads reading
from the same data location wait on this condition variable.
Once the original thread finishes the write, it updates the ta-
ble and signals the condition variable, waking up any threads
that need to read the data.
3We do not maintain a DRAM cache in front of the disk cache, however,
this has been identified as a potential improvement that could allow us to
buffer writes and then flush them in the background.
4This could also be implemented more efficiently with a broadcast mecha-
nism wherein the background eviction task is woken up as needed.
5This has been identified as a potential cause of lock contention. Future
work could consist of maintaining several “buckets”, which can each be
locked independently, leading to less lock contention.

3.2 Zone State Manager
The Zone State Manager tracks the state of all zones and
updates them as needed. Zones start in the empty state and
are placed in a queue. When selected for writing, a zone
moves to the active state. Once full, it transitions to the full
state, meaning no further writes are allowed.

Only one thread is allowed to write to a zone at one time in
order to avoid race conditions that result in non-sequential
writes to the zone; this is enforced through synchronization
primitives. When an active zone is being written to, it is
removed off the queue of active zones so that no other thread
may write to it. Then the zone is returned when the thread
has finished writing, or is moved to the full queue when it is
full.

The ZSM differentiates between ZNS and block-interface
SSDs when performing chunk eviction. During eviction, the
cache erases ZNS SSD zones and copies valid cache entries
from the zone back into the cache (host-side GC). In contrast,
block-interface SSDs maintain a free list of invalid chunks
that the device can overwrite later. This design allows us to
avoid performing host-side GC on block-interface SSDs.

3.3 Eviction
The Eviction Policy module defines a uniform interface for
multiple eviction strategies. All threads invoke this interface
after completing a read or write to disk. When eviction is
triggered, the eviction thread queries the policy for a zone
or chunk to evict - depending on the active strategy - which
is then removed from the policy’s internal data structures.
The eviction thread subsequently updates bookkeeping struc-
tures to reset the zone and adjusts the relevant state in the
ZSM.
We explored two primary eviction policies in this paper:

Zone Promotion LRU (ZPLRU), which evicts at zone granu-
larity, and Chunk LRU (CLRU), which evicts at chunk gran-
ularity. We chose these two cache algorithms based on our
requirements of being able to demonstrate host-side GC
(CLRU), and no host-side GC (ZPLRU). These algorithms are
also ones we’ve seen frequently used in literature (LRU), or
other similar caching systems [4].

ZPLRUmaintains and updates a single LRU queue of zones.
Whenever a single chunk is accessed within a zone via a read
or write, the entire zone, and all chunks within are promoted
to be recently accessed. When the eviction thread requests
a zone to be evicted, the policy chooses the least recently
used zone. We chose this algorithm for its simplicity and lack
of host-side GC. Additionally, it is the method chosen for
eviction by other region-based cache systems, demonstrating
its applicability [4]. A tradeoff when compared to CLRU is its
coarser granularity when performing eviction: a zone may
contain both frequently and infrequently accessed chunks,
resulting in recently used chunks being evicted. In practice

2025-04-21 22:59. Page 3 of 1–22.

John Ramsden and Sam Cheng

we have found the algorithm still maintains a high hit ratio
(Appendix D).

CLRU separates eviction (marking data as invalid and re-
claimable) from (host-side) GC (physically reclaiming space).
It operates at the chunk level: when a threshold for available
chunks is met, the least recently used chunks are evicted
and marked invalid. On ZNS SSDs, GC is performed at the
zone level. When the GC threshold is reached, CLRU selects
the most invalidated zone and rewrites its remaining valid
chunks into a new location, then erases the original zone to
reclaim space.
In contrast, on block-interface SSDs, physical erasure is

handled by the device, so host-side GC is not needed. Inval-
idated blocks can be overwritten directly, and CLRU only
manages logical invalidation.
To track chunk access recency, CLRU maintains an LRU

queue. Chunks are moved to the back of the queue whenever
they are read or written. When eviction is required, CLRU
selects the least recently accessed chunks from the front
of the queue, marks them invalid, and updates a zone-level
priority queue that tracks the proportion of invalid chunks
in each zone. This priority queue is used to select zones for
garbage collection (on ZNS only).

4 EVALUATION
The goals of our experiments (and the corresponding sections
where evaluation occurs) are to:

(1) Parameter Eval (§4.2.1): Evaluate how the different
SSDs compare under workloads with varying param-
eters, such as data distribution and chunk size.

(2) GC Eval (§4.2.2): Determine the effects of device-
side GC on block-interface SSDs for cache workloads,
and how device-side GC impacts throughput and tail-
latency.

(3) Eviction Eval (§4.2.3): Determine the effects of dif-
ferent eviction algorithms that include host-side ZNS
SSD GC, and those that do not.

4.1 Experimental Setup
Our server consists of an Intel Server R2208WFTZSR with,
256GiB of RAM, and two 16 core Xeon(R) Silver 4216 CPU,
running at 2.10 GHz running Ubuntu 22.04 with Linux 6.8.0.
We utilize a ZNS SSD, and a block-interface SSD. Both

drives share the same hardware, with the difference simply
being the firmware applied to them. We have confirmed this
with the vendor. They are of different capacity due to the
block-interface SSD requiring over-provisioning for device-
side GC that does not need to occur on the ZNS SSD. This
translates to more capacity being available for usage on ZNS.

ZNS SSD: (ZN540,Western Digital): 950.789GiB, 904 zones
Block-interface SSD: (SN540, Western Digital): 894.3GiB

All experiments use the mq-deadline scheduler on the
ZNS SSD and the none scheduler on the block-interface SSD.
The mq-deadline scheduler enforces strict I/O ordering [12],
which is necessary to maintain write pointer ordering on
ZNS devices in Linux 6.8.06. In contrast, the none sched-
uler is preferred for block-interface SSDs, and is the default
in Ubuntu 22.04, due to its lower latency and higher IOPS
under a simple FIFO design where strict ordering is unnec-
essary [13].

4.2 Benchmarks
We test Zipfian and uniform random distributions for cache
access patterns. We use the YCSB distribution generator [5]
for generating the relevant workloads. We use the default
Zipfian parameter (0.99) used by YCSB, which the authors
determined to be a reasonable workload for database and
cache workloads [6].

We planned to evaluate our two eviction types described
in §2 : (1) CLRU, to evaluate the effects of host-side GC, and
(2) ZPLRU, to evaluate how this policy performs with no
GC. CLRU was implemented but bugs remain, meaning we
were not able to complete experiments. For the purposes of
evaluation CLRU is missing, and all experiments use ZPLRU.
Our workloads consist of executing a sequence of calls

to the cache according to our experimental parameters. We
pre-generate workloads corresponding to chunk accesses as
binary files, load them into memory (to avoid the variability
and latency of disk access), and execute them from start to
finish. To measure metrics we inline nanosecond granularity
timers directly in code and measure between specific code
sections. For graphing we bin data over 60 second intervals,
leading to more readable graphs. We do not use binning
for latency, throughput and percentile calculations. We vary
three parameters: chunk size, distribution, and ratio. Ratio
refers to cache size to workload size ratio. All benchmarks
were executed with 64 threads (corresponding to the number
of hyperthreads available) to achieve the highest possible
bandwidth.

4.2.1 Parameter Evaluation. Our parameter evaluation con-
sists of modifying a broad range of parameters and evalu-
ating the effects on throughput and latency. Throughput
was low for 64KiB chunk experiments7, resulting in very
long-running experiments. Due to time constraints and the
large number of experiments, we artificially reduce cache
size based on chunk size for parameter evaluation. Specifi-
cally for chunk sizes of 64MiB we use 40 zones; for chunk
sizes of 512MiB we use 200 zones. Ideally, we would run all
experiments with a full-disk cache (904 zones), since under
6As of Linux 6.10.0, Zone Write Plugging was introduced [17], eliminating
the need for a specific scheduler to enforce write ordering.
7This could be due to inefficiencies in our cache, and future work could
consist of attempting to increase throughput through optimization.

2025-04-21 22:59. Page 4 of 1–22.

ZNCache - ZNS Workload Analysis

Figure 3: Cache Get Latency (ms), end to end latency
including hits and misses comparing ZNS and block-
interface (Block) SSDs

Figure 4: Cache Throughput (GiB/s) comparing ZNS
and block-interface (Block) SSDs

typical usagewewould expect a large portion of users to fully
utilize their disks. Prior to all experiments we issue a precon-
ditioning phase consisting of filling the disk to capacity to
ensure a baseline for each disk type. This is the same strategy
taken by Björling et al. (2021) [2]. The preconditioning phase
helps simulate a fully utilized disk, mitigating some of the
downsides of the reduced cache size. For the 512MiB and
64KiB chunk benchmarks, the total I/O is fixed at 3TiB and
600GiB, respectively, including both disk reads (cache hits)
and writes (cache misses). The two I/O amounts correspond
to the same amount of I/O over cache size (64KiB uses 40
zones, which is 20% of 512MiB’s 200, and therefore it has 20%
of the total I/O - 600GiB). We chose ratios of 1:2 and 1:10 for
cache size to workload size to demonstrate the behavior of
low eviction and high eviction, respectively. This allows us
to see two typical use-cases with low eviction demonstrating
a common scenario where the user has a large cache and
wants to achieve a high hit ratio, and high eviction, which
will stress our eviction algorithms. The high eviction sce-
nario will be more likely to initiate SSD GC due to the higher
quantity of writes.
As demonstrated in Fig. 3 (raw data in Appendix B), the

ZNS SSD demonstrates significantly lower cache get latency
with 512MiB chunks (on average 50.58% lower) compared
to the block-interface SSD. Along with lower latency, sig-
nificantly reduced variance is observed. P99 latency is also

consistently lower across 512MiB ZNS workloads compared
to SSD (on average 55.87% lower). We also see (Fig. 4) that
throughput is maintained at a higher rate (on average 108%
higher). We attribute this to GC, which appears to begin early
in the run (see Appendix C). Notably, on the block-interface
SSD, performance improves significantly over time following
an initial GC-induced drop, with write latency decreasing
steadily. This trend exceeds what would be expected from
improved hit ratios alone. We hypothesize that, with a large
512MiB chunk size, the drive gradually defragments itself
during the run, beginning from a heavily fragmented state
due to preconditioning. We explore this hypothesis in more
detail in §4.2.2.

With 64KiB chunks, block-interface SSDsmatch or slightly
outperform ZNS SSDs - unlike the performance gap observed
with 512MiB chunks (Figs. 3, 4). 64KiB chunks do not allow
us to reach throughput necessary to exhibit GC, meaning
the block-interface SSD is capable of keeping up with the
workload without demonstrating performance degradation.
It is possible more cache optimization could lead to sufficient
throughput with smaller chunks, leading to a similar pattern
of performance that we see with large chunk sizes; this re-
mains as future work. On average across 64KiB workloads,
we see 1.88% reduced performance on ZNS SSDs, 1.9% in-
creased latency, and similar tail latency. We determine that
GC is not occurring with 64KiB chunks due to the workloads
not exhibiting the same pattern of performance degradation.
In contrast, all 512MiB workloads exhibit clear signs of GC
(Appendix C).

4.2.2 Garbage Collection Evaluation. Due to our precondi-
tioning process, which attempts to put drives into a steady
state, it can be difficult to detect the beginning of GC. Since
we write the entire disk in full prior to our experiment, we
may be at the drop off point displayed in Fig. 1 prior to even
starting our cache, meaning we are already doing significant
GC. This does correspond to some of the behavior we see in
the 512MiB chunk size experiments we performed in §4.2.1 -
we observe that throughput almost immediately drops on the
block-interface SSD, leading us to believe GC is occurring
immediately.

In this experiment we attempt to determine the before and
after effects of device-side GC on block-interface SSDs under
conditions where GC should be most apparent. We modify
our initialization phase to give our workload the best chance
of exhibiting GC. We perform a complete disk TRIM, which
informs the block-interface SSD that all blocks are no longer
in use and can be completely erased. This puts the SSD in the
ideal performance scenario where GC should not be occur-
ring, and therefore we can observe behavior at the beginning
of our workload that does not demonstrate GC, and then the
corresponding drop. At this point we execute a high write

2025-04-21 22:59. Page 5 of 1–22.

John Ramsden and Sam Cheng

workload (low ratio 1:10, uniform random, 256MiB chunks,
6TiB of I/O). We chose to use a slightly smaller chunk size of
256MiB instead of 512MiB to cause more internal fragmen-
tation based on some of the findings we observed in §4.2.1,
where the drive appeared to defragment itself over time. If
our cache is capable of exhibiting a severe drop off it should
then demonstrate it around the time it completely fills. Fig. 5
illustrates a clear reduction in throughput attributable to
GC, with a pronounced drop occurring at the point of the
first complete disk fill. In addition to throughput, get latency
was significantly reduced on ZNS, as demonstrated in Fig. 6
(more results in Appendix E). We saw a latency increase
with the block-interface SSD of 51.0%, a tail latency increase
of 55.6%, and a throughput decrease of 35.4% compared to
performance before GC.

Figure 5: Cache throughput with GC (1:10 ratio, uni-
form random, 256MiB chunk, 6TiB of I/O workload)

Figure 6: Get latency with GC (1:10 ratio, uniform ran-
dom, 256MiB chunk, 6TiB of I/O workload)

We also ran this experiment on 512MiB chunks instead of
256MiB. Based on our hypothesis from §4.2.1 we believed we
would not see GC at all with the large chunk size of 512MiB,
and this was in fact what occurred - observable GC did not
occur (Appendix E). We used all the same experimental pa-
rameters that we did for 256MiB in this section, performed
the same amount of I/O, but only modified the chunk size.
256MiB chunk size in contrast seems to be small enough
that fragmentation occurs, contributing to GC. This presents
us with an interesting observation: large chunk sizes can
potentially eliminate GC.

We isolated and tested the effects of 3.2s artificial latency
(Appendix A) on GC. We executed the same 256MiB chunk
GC workload with no latency, essentially simulating a very

close, or local data store. Fig. 7 demonstrates that ZNS SSDs
were able to take advantage of the time previously spent
waiting, writing to the disk, significantly improving through-
put and total runtime. The block-interface SSD in contrast
saw next to no noticeable improvement by removing the
artificial latency. This demonstrates that the block-interface
SSD was already I/O bound due to GC, while the ZNS SSD
was not.

Figure 7: Throughput with GC (1:10 ratio, uniform ran-
dom, 256MiB chunk, 6TiB of I/O workload) comparing
artificial latency (3.2s) with no artificial latency (0s)

4.2.3 Eviction Algorithm Evaluation. For goal (3), we planned
to compare CLRU and ZPLRUworkloads, evaluating the over-
head of executing host-side GC. As mentioned, CLRU was
not in a state where we were ready to experiment; as such we
do not have results. Given enough time we would have run
all of the experiments mentioned in §4.2.1 for CLRU as well.
We would have evaluated the overheads of doing host-side
GC on ZNS (latency, and throughput) and evaluated how
it compares to device-side GC. We had hoped to evaluate
whether the increased potential hit ratio (due to us evict-
ing only select data based on LRU, rather than everything
within a zone with ZPLRU) would have translated to better
performance.

5 CONCLUSION
Wefind that ZNS SSDs significantly outperform block-interface
SSDs in caching scenarios where device-side GC is active
and disks are fully utilized, delivering higher throughput,
lower latency, and more consistent performance. On aver-
age, ZNS SSDs achieve a throughput increase of 107.9% and
a latency reduction of 50.6% in these conditions. When GC
is not a factor - such as under light workloads - performance
differences are negligible, making the transition to ZNS less
compelling given the associated development overhead. Our
results also suggest that write granularity plays a critical
role in performance: sufficiently large chunk sizes can miti-
gate or eliminate the impact of GC entirely. These insights
suggest that developers can benefit from ZNS adoption in
high-throughput environments, provided that the workload
is tuned to ZNS constraints.

2025-04-21 22:59. Page 6 of 1–22.

ZNCache - ZNS Workload Analysis

AVAILABILITY
All source code for the projects described in the paper can
be found at https://github.com/johnramsden/ZNCache. Raw
experiment data is available upon request.

6 FOOTNOTES
ChatGPT [9] was used for assisting with text re-structuring, and graphing.
All prompts are available at request.

ACKNOWLEDGMENTS
This work was done under the supervision of Professor
Alexandra (Sasha) Fedorova Department of Electrical and
Computer Engineering, University of British Columbia.

REFERENCES
[1] Amazon Web Services. 2025. Amazon S3 Pricing. https://aws.amazon.

com/s3/pricing/ Accessed: February 10, 2025.
[2] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. 2021.
{ZNS}: Avoiding the block interface tax for flash-based {SSDs}
(USENIX’21).

[3] CacheLib. 2025. Cache Library Architecture Guide. https:
//cachelib.org/docs/Cache_Library_Architecture_Guide/large_
object_cache#inserts. Accessed: 2025-02-07.

[4] CacheLib. 2025. CacheLib – Pluggable caching engine to build and
scale high performance cache services. https://cachelib.org. Accessed:
2025-02-07.

[5] Brian Cooper. 2019. YCSB. https://github.com/brianfrankcooper/
YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/
main/java/site/ycsb/generator/ZipfianGenerator.java Accessed:
February 10, 2025.

[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

[7] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan
Stutsman,MohammadAlizadeh, and Sachin Katti. 2019. Flashield: a hy-
brid key-value cache that controls flash write amplification (NSDI’19).

[8] Yanqi Lv, Peiquan Jin, Xiaoliang Wang, Ruicheng Liu, Liming Fang,
Yuanjin Lin, and Kuankuan Guo. 2022. Zonedstore: A concurrent
zns-aware cache system for cloud data storage. IEEE.

[9] OpenAI. 2025. ChatGPT: Assisting with Text Structuring and Restruc-
turing. https://chat.openai.com. Accessed: 2025-02-07.

[10] John Ramsden. 2024. ZNSCCACHE: ZNS Based Chunk Cache. (2024).
[11] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.

2015. {RIPQ}: Advanced photo caching on flash for facebook. In 13th
USENIX Conference on File and Storage Technologies (FAST 15).

[12] Nick Tehrany and Animesh Trivedi. 2022. Understanding nvme zoned
namespace (zns) flash ssd storage devices. (2022).

[13] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altipar-
mak. 2023. Do we still need IO schedulers for low-latency disks?. In
Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems.

[14] WiredTiger Project. 2025. Chunk Cache in WiredTiger.
https://github.com/wiredtiger/wiredtiger.github.com/blob/
062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.
html Accessed: February 10, 2025.

[15] Chongzhuo Yang, Zhang Cao, Chang Guo, Ming Zhao, and Zhichao
Cao. 2024. Can ZNS SSDs be Better Storage Devices for Persistent
Cache? (HotStorage ’24).

[16] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Anal-
ysis of Hundreds of In-memory Key-value Cache Clusters at Twitter.
ACM Transactions on Storage (2021).

[17] Zoned Storage Project. 2025. Write Ordering Control. https://
zonedstorage.io/docs/linux/sched#zone-write-plugging. Accessed:
2025-04-17.

2025-04-21 22:59. Page 7 of 1–22.

https://github.com/johnramsden/ZNCache
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://cachelib.org/docs/Cache_Library_Architecture_Guide/large_object_cache#inserts
https://cachelib.org/docs/Cache_Library_Architecture_Guide/large_object_cache#inserts
https://cachelib.org/docs/Cache_Library_Architecture_Guide/large_object_cache#inserts
https://cachelib.org
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://chat.openai.com
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://zonedstorage.io/docs/linux/sched#zone-write-plugging
https://zonedstorage.io/docs/linux/sched#zone-write-plugging

A LATENCY EVALUATION
The following latency evaluation was completed on US West
(Oregon) us-west-2, 11ms latency, accessed from the Univer-
sity of British Columbia campus.

Raw data: https://github.com/johnramsden/ZNCache/blob/
f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_
TRANSFER_EVAL.md

Results

Table 1: 64KiB Chunk size

Metric Seconds Microseconds

Mean latency 0.0406 40632
Geometric mean latency 0.0377 37745
Minimum latency 0.0282 28245
Maximum latency 0.3845 384506
Standard deviation 0.0350 35049

Table 2: 256MiB Chunk size

Metric Seconds Microseconds

Mean latency 3.2096 3209583
Geometric mean latency 3.1314 3131383
Minimum latency 2.6974 2697422
Maximum latency 7.7637 7763737
Standard deviation 0.8617 861663

Table 3: 512MiB Chunk size

Metric Seconds Microseconds

Mean latency 5.4138 5413781
Geometric mean latency 5.4129 5412910
Minimum latency 5.3835 5383455
Maximum latency 6.0413 6041250
Standard deviation 0.1003 100301

Table 4: 1GiB Chunk size

Metric Seconds Microseconds

Mean latency 11.5242 11524248
Geometric mean latency 11.5075 11507539
Minimum latency 11.3097 11309672
Maximum latency 16.5442 16544165
Standard deviation 0.6793 679328

https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md
https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md
https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md

B RAW THROUGHPUT AND LATENCY
DATA

The percentages refer to the percentage increase in speed
compared to the block device with the same parameters.

Table 5: Get Latency (End-to-end, reads and writes).

Name Mean (ms) P99 (ms)
ZNS-512M-UNIF-10 30434.25 (40.58%) 121594.3 (59.15%)
Block-512M-UNIF-10 51219.31 297634.35
ZNS-512M-UNIF-2 20797.86 (63.09%) 115668.18 (67.75%)
Block-512M-UNIF-2 56353.88 358656.23
ZNS-512M-ZIPF-10 17217.21 (55.22%) 120884.2 (62.36%)
Block-512M-ZIPF-10 38448.44 321128.22
ZNS-512M-ZIPF-2 14512.1 (43.42%) 140618.34 (34.22%)
Block-512M-ZIPF-2 25649.63 213772.96
ZNS-64K-UNIF-10 172.5 (-0.44%) 693.76 (0.01%)
Block-64K-UNIF-10 171.74 693.86
ZNS-64K-UNIF-2 115.92 (-3.32%) 629.02 (0.17%)
Block-64K-UNIF-2 112.2 630.11
ZNS-64K-ZIPF-10 45.52 (-0.86%) 488.2 (0.11%)
Block-64K-ZIPF-10 45.13 488.72
ZNS-64K-ZIPF-2 22.52 (-2.97%) 367.69 (-0.09%)
Block-64K-ZIPF-2 21.87 367.37

Table 6: Disk Write Latency

Name Mean (ms) P99 (ms)
ZNS-512M-UNIF-10 1467.7 (77.80%) 3973.54 (92.45%)
Block-512M-UNIF-10 6612.51 52602.35
ZNS-512M-UNIF-2 2804.45 (84.64%) 5500.31 (88.74%)
Block-512M-UNIF-2 18263.94 48869.13
ZNS-512M-ZIPF-10 4002.84 (76.03%) 6840.87 (87.46%)
Block-512M-ZIPF-10 16700.43 54572.31
ZNS-512M-ZIPF-2 13220.55 (54.49%) 25297.1 (61.22%)
Block-512M-ZIPF-2 29051.69 65231.09
ZNS-64K-UNIF-10 0.07 (0.00%) 0.12 (-16.7%)
Block-64K-UNIF-10 0.07 0.1
ZNS-64K-UNIF-2 0.07 (0.00%) 0.12 (-8.3%)
Block-64K-UNIF-2 0.07 0.11
ZNS-64K-ZIPF-10 0.07 (0.00%) 0.11 (0.0%)
Block-64K-ZIPF-10 0.07 0.11
ZNS-64K-ZIPF-2 0.07 (0.00%) 0.11 (9.1%)
Block-64K-ZIPF-2 0.07 0.12

Table 7: Disk Read Latency

Name Mean (ms) P99 (ms)
ZNS-512M-UNIF-10 451.61 (77.62%) 1278.2 (51.66%)
Block-512M-UNIF-10 2018.36 2644.16
ZNS-512M-UNIF-2 909.75 (65.14%) 2097.4 (42.32%)
Block-512M-UNIF-2 2609.59 3636.54
ZNS-512M-ZIPF-10 1367.41 (59.12%) 2752.36 (56.44%)
Block-512M-ZIPF-10 3344.54 6318.5
ZNS-512M-ZIPF-2 3701.99 (70.86%) 6935.28 (62.98%)
Block-512M-ZIPF-2 12702.44 18735.18
ZNS-64K-UNIF-10 0.31 (-3.33%) 0.63 (-1.61%)
Block-64K-UNIF-10 0.3 0.62
ZNS-64K-UNIF-2 0.32 (-6.67%) 0.65 (-4.84%)
Block-64K-UNIF-2 0.3 0.62
ZNS-64K-ZIPF-10 0.33 (-6.45%) 0.79 (-9.72%)
Block-64K-ZIPF-10 0.31 0.72
ZNS-64K-ZIPF-2 0.33 (-6.45%) 0.83 (-6.41%)
Block-64K-ZIPF-2 0.31 0.78

Table 8: Disk Get Throughput. Mean measured by di-
viding the total workload by the runtime, while P99
was obtained from periodic measurements averaged
over 60 seconds.

Name Mean (GiB/s) P99 (GiB/s)
ZNS-512M-UNIF-10 1.043 (67.8%) 0.744 (568.2%)
Block-512M-UNIF-10 0.622 0.111
ZNS-512M-UNIF-2 1.520 (169.3%) 0.776 (242.2%)
Block-512M-UNIF-2 0.564 0.227
ZNS-512M-ZIPF-10 1.829 (121.8%) 1.243 (321.9%)
Block-512M-ZIPF-10 0.825 0.295
ZNS-512M-ZIPF-2 2.125 (72.7%) 1.564 (99.7%)
Block-512M-ZIPF-2 1.230 0.783
ZNS-64K-UNIF-10 0.023 (-0.5%) 0.021 (-0.1%)
Block-64K-UNIF-10 0.023 0.021
ZNS-64K-UNIF-2 0.034 (-3.2%) 0.022 (-0.2%)
Block-64K-UNIF-2 0.035 0.022
ZNS-64K-ZIPF-10 0.086 (-0.9%) 0.048 (-0.6%)
Block-64K-ZIPF-10 0.087 0.048
ZNS-64K-ZIPF-2 0.173 (-2.9%) 0.053 (-1.0%)
Block-64K-ZIPF-2 0.178 0.054

Table 9: Disk Read Throughput. Measurements ob-
tained from periodic read throughput measurements
averaged over 60 seconds.

Name Mean (GiB/s) P99 (GiB/s)
ZNS-512M-UNIF-10 0.102 (69.6%) 1.133E-11 (46.0%)
Block-512M-UNIF-10 0.060 7.761E-12
ZNS-512M-UNIF-2 0.743 (169.2%) 1.156E-10 (89.2%)
Block-512M-UNIF-2 0.276 6.108E-11
ZNS-512M-ZIPF-10 1.154 (121.9%) 5.420E-10 (214.9%)
Block-512M-ZIPF-10 0.520 1.721E-10
ZNS-512M-ZIPF-2 1.799 (72.5%) 9.215E-10 (48.5%)
Block-512M-ZIPF-2 1.043 6.205E-10
ZNS-64K-UNIF-10 0.002 (-5.3%) 2.893E-13 (-4.3%)
Block-64K-UNIF-10 0.002 3.025E-13
ZNS-64K-UNIF-2 0.013 (-8.0%) 1.080E-12 (-2.0%)
Block-64K-UNIF-2 0.014 1.102E-12
ZNS-64K-ZIPF-10 0.065 (-1.1%) 2.537E-11 (-1.0%)
Block-64K-ZIPF-10 0.066 2.563E-11
ZNS-64K-ZIPF-2 0.151 (-3.9%) 3.022E-11 (-1.9%)
Block-64K-ZIPF-2 0.157 3.080E-11

Table 10: Disk Write Throughput. Measurements ob-
tained from periodic write throughput measurements
averaged over 60 seconds.

Name Mean (GiB/s) P99 (GiB/s)
ZNS-512M-UNIF-10 0.941 (67.8%) 6.820E-10 (622.7%)
Block-512M-UNIF-10 0.561 9.437E-11
ZNS-512M-UNIF-2 0.786 (172.2%) 6.075E-10 (459.1%)
Block-512M-UNIF-2 0.289 1.087E-10
ZNS-512M-ZIPF-10 0.685 (122.3%) 5.531E-10 (493.8%)
Block-512M-ZIPF-10 0.308 9.313E-11
ZNS-512M-ZIPF-2 0.346 (74.8%) 2.207E-10 (129.5%)
Block-512M-ZIPF-2 0.198 9.616E-11
ZNS-64K-UNIF-10 0.021 (-0.0%) 1.946E-11 (-0.1%)
Block-64K-UNIF-10 0.021 1.948E-11
ZNS-64K-UNIF-2 0.021 (-0.0%) 1.945E-11 (-0.2%)
Block-64K-UNIF-2 0.021 1.948E-11
ZNS-64K-ZIPF-10 0.021 (-0.0%) 1.944E-11 (-0.2%)
Block-64K-ZIPF-10 0.021 1.948E-11
ZNS-64K-ZIPF-2 0.021 (0.0%) 1.945E-11 (-0.1%)
Block-64K-ZIPF-2 0.021 1.947E-11

Table 11: Get Latency (end-to-end including reads and
writes) (GC workload, 3.2s latency for 256M chunks,
5.3s latency for 512M chunks)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 17228.71 (12.55%) 68451.80 (20.01%)
Block-256M-UNIF-10 19701.04 85580.73
ZNS-512M-UNIF-10 30842.60 (-1.54%) 123933.37 (-1.16%)
Block-512M-UNIF-10 30374.74 122512.31

Table 12: Get Latency (end-to-end including reads and
writes) (GC workload, 0s latency)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 13533.11 (30.39%) 53076.77 (37.64%)
Block-256M-UNIF-10 19441.10 85112.27
ZNS-512M-UNIF-10 27305.66 (17.24%) 111870.09 (17.15%)
Block-512M-UNIF-10 32995.58 135029.59

Table 13: DiskWrite Latency (GCworkload, 3.2s latency
for 256M chunks, 5.3s latency for 512M chunks)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 674.14 (47.98%) 1614.04 (47.20%)
Block-256M-UNIF-10 1295.94 3056.81
ZNS-512M-UNIF-10 1523.29 (-3.52%) 3948.19 (4.87%)
Block-512M-UNIF-10 1471.53 4150.41

Table 14: DiskWrite Latency (GC workload, 0s latency)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 2817.61 (36.77%) 3433.91 (52.94%)
Block-256M-UNIF-10 4455.82 7296.20
ZNS-512M-UNIF-10 5697.63 (23.96%) 6767.06 (27.96%)
Block-512M-UNIF-10 7492.57 9392.91

Table 15: Disk Read Latency (GCworkload, 3.2s latency
for 256M chunks, 5.3s latency for 512M chunks)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 199.70 (85.04%) 364.03 (88.66%)
Block-256M-UNIF-10 1335.24 3210.52
ZNS-512M-UNIF-10 430.28 (77.03%) 1192.47 (53.36%)
Block-512M-UNIF-10 1873.06 2556.69

Table 16: Disk Read Latency (GC workload, 0s latency)

Name Mean (ms) P99 (ms)
ZNS-256M-UNIF-10 1252.33 (73.78%) 1804.61 (78.51%)
Block-256M-UNIF-10 4775.61 8398.39
ZNS-512M-UNIF-10 3266.68 (-39.12%) 4275.98 (-51.13%)
Block-512M-UNIF-10 2348.17 2829.25

C THROUGHPUT AND LATENCY
GRAPHS

The following section has detailed graphs for various metrics:
(1) Get throughput: Complete cache throughput (eg. user

requests a 512MiB chunk, this is 512MiB of data con-
tributing to throughput)

(2) Read throughput: Throughput contributions from
only disk reads

(3) Write throughput: Throughput contributions from
only disk writes

(4) Get latency: End-to-end latency including both hits
and misses for the entire path required to “get” an
object from the cache

(5) Read latency: Disk IO read latency
(6) Write latency: Disk IO write latency
(7) Hit latency: The entire code path executed when a

cache hit occurs (includes read latency)
(8) Miss latency: The entire code path executed when a

cache miss occurs (includes write latency)

C.1 Get Latency

00:16:40 00:33:20 00:50:00 01:06:40
Time (Hours:Minutes:Seconds)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

La
te

nc
y

(m
s)

1e17
ZNS
Block

Figure 8: Cache Get latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20
Time (Hours:Minutes:Seconds)

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(m
s)

1e17
ZNS
Block

Figure 9: Cache Get latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00 00:58:20
Time (Hours:Minutes:Seconds)

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(m
s)

1e17
ZNS
Block

Figure 10: Cache Get latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20
Time (Hours:Minutes:Seconds)

1

2

3

4

5

6

La
te

nc
y

(m
s)

1e16
ZNS
Block

Figure 11: Cache Get latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

01:23:20 02:46:40 04:10:00 05:33:20 06:56:40
Time (Hours:Minutes:Seconds)

1.675

1.700

1.725

1.750

1.775

1.800

1.825

1.850

La
te

nc
y

(m
s)

1e14
ZNS
Block

Figure 12: Cache Get latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

00:33:20 01:06:40 01:40:00 02:13:20 02:46:40 03:20:00 03:53:20 04:26:40
Time (Hours:Minutes:Seconds)

1.0

1.2

1.4

1.6

1.8

La
te

nc
y

(m
s)

1e14
ZNS
Block

Figure 13: Cache Get latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20 01:40:00
Time (Hours:Minutes:Seconds)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

La
te

nc
y

(m
s)

1e14
ZNS
Block

Figure 14: Cache Get latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00
Time (Hours:Minutes:Seconds)

2

3

4

5

6

7

8

La
te

nc
y

(m
s)

1e13
ZNS
Block

Figure 15: Cache Get latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

C.2 Hit Latency

00:16:40 00:33:20 00:50:00 01:06:40
Time (Hours:Minutes:Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Hi
t L

at
en

cy
 (m

s)

1e17
ZNS
Block

Figure 16: Cache Hit latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20
Time (Hours:Minutes:Seconds)

0

1

2

3

4

5

6

Hi
t L

at
en

cy
 (m

s)

1e16
ZNS
Block

Figure 17: Cache Hit latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00 00:58:20
Time (Hours:Minutes:Seconds)

0.5

1.0

1.5

2.0

2.5

Hi
t L

at
en

cy
 (m

s)

1e16
ZNS
Block

Figure 18: Cache Hit latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20
Time (Hours:Minutes:Seconds)

1

2

3

4

Hi
t L

at
en

cy
 (m

s)

1e16
ZNS
Block

Figure 19: Cache Hit latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

01:23:20 02:46:40 04:10:00 05:33:20 06:56:40
Time (Hours:Minutes:Seconds)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Hi
t L

at
en

cy
 (m

s)

1e12
ZNS
Block

Figure 20: Cache Hit latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

00:33:20 01:06:40 01:40:00 02:13:20 02:46:40 03:20:00 03:53:20 04:26:40
Time (Hours:Minutes:Seconds)

3

4

5

6

7

8

9

Hi
t L

at
en

cy
 (m

s)

1e11
ZNS
Block

Figure 21: Cache Hit latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20 01:40:00
Time (Hours:Minutes:Seconds)

3

4

5

6

7

Hi
t L

at
en

cy
 (m

s)

1e11
ZNS
Block

Figure 22: Cache Hit latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00
Time (Hours:Minutes:Seconds)

3

4

5

6

7

Hi
t L

at
en

cy
 (m

s)

1e11
ZNS
Block

Figure 23: Cache Hit latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

C.3 Miss Latency

00:16:40 00:33:20 00:50:00 01:06:40
Time (Hours:Minutes:Seconds)

0.5

1.0

1.5

2.0

2.5

M
iss

 L
at

en
cy

 (m
s)

1e17
ZNS
Block

Figure 24: CacheMiss latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20
Time (Hours:Minutes:Seconds)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
iss

 L
at

en
cy

 (m
s)

1e17
ZNS
Block

Figure 25: CacheMiss latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00 00:58:20
Time (Hours:Minutes:Seconds)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
iss

 L
at

en
cy

 (m
s)

1e17
ZNS
Block

Figure 26: CacheMiss latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20
Time (Hours:Minutes:Seconds)

0.5

1.0

1.5

2.0

M
iss

 L
at

en
cy

 (m
s)

1e17
ZNS
Block

Figure 27: CacheMiss latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

01:23:20 02:46:40 04:10:00 05:33:20 06:56:40
Time (Hours:Minutes:Seconds)

1.862

1.864

1.866

1.868

M
iss

 L
at

en
cy

 (m
s)

1e14
ZNS
Block

Figure 28: Cache Miss latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

00:33:20 01:06:40 01:40:00 02:13:20 02:46:40 03:20:00 03:53:20 04:26:40
Time (Hours:Minutes:Seconds)

1.862

1.864

1.866

1.868

1.870

M
iss

 L
at

en
cy

 (m
s)

1e14
ZNS
Block

Figure 29: Cache Miss latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20 01:40:00
Time (Hours:Minutes:Seconds)

1.850

1.852

1.854

1.856

1.858

1.860

M
iss

 L
at

en
cy

 (m
s)

1e14
ZNS
Block

Figure 30: Cache Miss latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00
Time (Hours:Minutes:Seconds)

1.82

1.83

1.84

1.85

1.86

1.87

1.88

M
iss

 L
at

en
cy

 (m
s)

1e14
ZNS
Block

Figure 31: Cache Miss latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

C.4 Read Latency

00:16:40 00:33:20 00:50:00 01:06:40
Time (Hours:Minutes:Seconds)

0.5

1.0

1.5

2.0

2.5

Re
ad

 L
at

en
cy

 (m
s)

1e15
ZNS
Block

Figure 32: Disk Read latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20
Time (Hours:Minutes:Seconds)

1.0

1.5

2.0

2.5

3.0

Re
ad

 L
at

en
cy

 (m
s)

1e15
ZNS
Block

Figure 33: Disk Read latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00 00:58:20
Time (Hours:Minutes:Seconds)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Re
ad

 L
at

en
cy

 (m
s)

1e15

ZNS
Block

Figure 34: Disk Read latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20
Time (Hours:Minutes:Seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
ad

 L
at

en
cy

 (m
s)

1e16
ZNS
Block

Figure 35: Disk Read latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

01:23:20 02:46:40 04:10:00 05:33:20 06:56:40
Time (Hours:Minutes:Seconds)

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Re
ad

 L
at

en
cy

 (m
s)

1e11
ZNS
Block

Figure 36: Disk Read latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

00:33:20 01:06:40 01:40:00 02:13:20 02:46:40 03:20:00 03:53:20 04:26:40
Time (Hours:Minutes:Seconds)

2.8

3.0

3.2

3.4

3.6

Re
ad

 L
at

en
cy

 (m
s)

1e11
ZNS
Block

Figure 37: Disk Read latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20 01:40:00
Time (Hours:Minutes:Seconds)

2.8

3.0

3.2

3.4

3.6

Re
ad

 L
at

en
cy

 (m
s)

1e11
ZNS
Block

Figure 38: Disk Read latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00
Time (Hours:Minutes:Seconds)

2.6

2.8

3.0

3.2

3.4

3.6

Re
ad

 L
at

en
cy

 (m
s)

1e11
ZNS
Block

Figure 39: Disk Read latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

C.5 Write Latency

00:16:40 00:33:20 00:50:00 01:06:40
Time (Hours:Minutes:Seconds)

0

2

4

6

8

W
rit

e
La

te
nc

y
(m

s)

1e16
ZNS
Block

Figure 40: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20
Time (Hours:Minutes:Seconds)

0

1

2

3

4

5

6

W
rit

e
La

te
nc

y
(m

s)

1e16
ZNS
Block

Figure 41: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00 00:58:20
Time (Hours:Minutes:Seconds)

0

1

2

3

4

5

6

W
rit

e
La

te
nc

y
(m

s)

1e16
ZNS
Block

Figure 42: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20
Time (Hours:Minutes:Seconds)

0

1

2

3

4

5

6

W
rit

e
La

te
nc

y
(m

s)

1e16
ZNS
Block

Figure 43: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

01:23:20 02:46:40 04:10:00 05:33:20 06:56:40
Time (Hours:Minutes:Seconds)

6.6

6.7

6.8

6.9

7.0

7.1

W
rit

e
La

te
nc

y
(m

s)

1e10
ZNS
Block

Figure 44: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

00:33:20 01:06:40 01:40:00 02:13:20 02:46:40 03:20:00 03:53:20 04:26:40
Time (Hours:Minutes:Seconds)

6.6

6.7

6.8

6.9

7.0

7.1

W
rit

e
La

te
nc

y
(m

s)

1e10
ZNS
Block

Figure 45: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

00:16:40 00:33:20 00:50:00 01:06:40 01:23:20 01:40:00
Time (Hours:Minutes:Seconds)

6.6

6.7

6.8

6.9

7.0

7.1

7.2

W
rit

e
La

te
nc

y
(m

s)

1e10
ZNS
Block

Figure 46: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

00:08:20 00:16:40 00:25:00 00:33:20 00:41:40 00:50:00
Time (Hours:Minutes:Seconds)

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

W
rit

e
La

te
nc

y
(m

s)

1e10
ZNS
Block

Figure 47: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

C.6 Get Throughput

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20
Time (Hours:Minutes)

0.2

0.4

0.6

0.8

1.0

Gi
B/

s

ZNS
Block

Figure 48: Cache Get Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30
Time (Hours:Minutes)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Gi
B/

s

ZNS
Block

Figure 49: Cache Get Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (Hours:Minutes)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Gi
B/

s

ZNS
Block

Figure 50: Cache Get Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40
Time (Hours:Minutes)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Gi
B/

s

ZNS
Block

Figure 51: Cache Get Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
Time (Hours:Minutes)

0.0210

0.0215

0.0220

0.0225

0.0230

Gi
B/

s

ZNS
Block

Figure 52: CacheGet Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:10 ratio.

00:00 01:00 02:00 03:00 04:00 05:00
Time (Hours:Minutes)

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

Gi
B/

s

ZNS
Block

Figure 53: CacheGet Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:2 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (Hours:Minutes)

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Gi
B/

s

ZNS
Block

Figure 54: CacheGet Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50
Time (Hours:Minutes)

0.05

0.10

0.15

0.20

0.25

Gi
B/

s

ZNS
Block

Figure 55: CacheGet Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:2 ratio.

C.7 Read Throughput

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20
Time (Hours:Minutes)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Gi
B/

s

ZNS
Block

Figure 56: Cache Read Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30
Time (Hours:Minutes)

0.2

0.4

0.6

0.8

1.0

Gi
B/

s

ZNS
Block

Figure 57: Cache Read Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (Hours:Minutes)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Gi
B/

s

ZNS
Block

Figure 58: Cache Read Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40
Time (Hours:Minutes)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Gi
B/

s

ZNS
Block

Figure 59: Cache Read Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
Time (Hours:Minutes)

0.0000

0.0005

0.0010

0.0015

0.0020

Gi
B/

s

ZNS
Block

Figure 60: Cache Read Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:10 ratio.

00:00 01:00 02:00 03:00 04:00 05:00
Time (Hours:Minutes)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Gi
B/

s

ZNS
Block

Figure 61: Cache Read Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:2 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (Hours:Minutes)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gi
B/

s

ZNS
Block

Figure 62: Cache Read Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50
Time (Hours:Minutes)

0.05

0.10

0.15

0.20

0.25

Gi
B/

s

ZNS
Block

Figure 63: Cache Read Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:2 ratio.

C.8 Write Throughput

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20
Time (Hours:Minutes)

0.2

0.4

0.6

0.8

1.0

Gi
B/

s

ZNS
Block

Figure 64: Cache Write Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30
Time (Hours:Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gi
B/

s

ZNS
Block

Figure 65: Cache Write Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (Hours:Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gi
B/

s

ZNS
Block

Figure 66: Cache Write Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40
Time (Hours:Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gi
B/

s

ZNS
Block

Figure 67: Cache Write Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
Time (Hours:Minutes)

0.02085

0.02090

0.02095

0.02100

0.02105

0.02110

Gi
B/

s

ZNS
Block

Figure 68: Cache Write Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:10 ratio.

00:00 01:00 02:00 03:00 04:00 05:00
Time (Hours:Minutes)

0.02088

0.02090

0.02092

0.02094

0.02096

Gi
B/

s

ZNS
Block

Figure 69: Cache Write Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:2 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (Hours:Minutes)

0.02085

0.02090

0.02095

0.02100

0.02105

0.02110

0.02115

0.02120

Gi
B/

s

ZNS
Block

Figure 70: Cache Write Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50
Time (Hours:Minutes)

0.02085

0.02090

0.02095

0.02100

0.02105

0.02110

0.02115

Gi
B/

s

ZNS
Block

Figure 71: Cache Write Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:2 ratio.

D HIT RATIO GRAPHS
CLRU was not evaluated, but we expected it to have a higher
hit ratio compared to ZLRU.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20
Time (Hours:Minutes)

0.02

0.04

0.06

0.08

0.10

Hi
t R

at
io

ZNS
Block

Figure 72: Cache Hit Ratio for 512M chunk size, Uni-
form distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30
Time (Hours:Minutes)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Hi
t R

at
io

ZNS
Block

Figure 73: Cache Hit Ratio for 512M chunk size, Uni-
form distribution, and 1:2 ratio.

00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (Hours:Minutes)

0.45

0.50

0.55

0.60

Hi
t R

at
io

ZNS
Block

Figure 74: CacheHit Ratio for 512M chunk size, Zipfian
distribution, and 1:10 ratio.

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40
Time (Hours:Minutes)

0.60

0.65

0.70

0.75

0.80

0.85

Hi
t R

at
io

ZNS
Block

Figure 75: CacheHit Ratio for 512M chunk size, Zipfian
distribution, and 1:2 ratio.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
Time (Hours:Minutes)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hi
t R

at
io

ZNS
Block

Figure 76: CacheHit Ratio for 64K chunk size, Uniform
distribution, and 1:10 ratio.

00:00 01:00 02:00 03:00 04:00 05:00
Time (Hours:Minutes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Hi
t R

at
io

ZNS
Block

Figure 77: CacheHit Ratio for 64K chunk size, Uniform
distribution, and 1:2 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (Hours:Minutes)

0.50

0.55

0.60

0.65

0.70

0.75

Hi
t R

at
io

ZNS
Block

Figure 78: Cache Hit Ratio for 64K chunk size, Zipfian
distribution, and 1:10 ratio.

00:00 00:10 00:20 00:30 00:40 00:50
Time (Hours:Minutes)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Hi
t R

at
io

ZNS
Block

Figure 79: Cache Hit Ratio for 64K chunk size, Zipfian
distribution, and 1:2 ratio.

E GC EXPERIMENT GRAPHS
No preconditioning phase was performed in these experi-
ments in order to observe the effects of GC.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45
Time (hours:minutes)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Th
ro

ug
hp

ut
 (G

iB
/s

)

Block 5.4s
ZNS 5.4s
Block 0s
ZNS 0s

Figure 80: Throughput (GiB/s) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45
Time (hours:minutes)

20

25

30

35

40

45

50
La

te
nc

y
(s

ec
on

ds
)

Block 5.4s
ZNS 5.4s
Block 0s
ZNS 0s

Figure 81: Latency for 512M chunk size, Uniform dis-
tribution, and 1:10 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (hours:minutes)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Th
ro

ug
hp

ut
 (G

iB
/s

)

ZNS 0s
Block 0s
ZNS 3.2s
Block 3.2

Figure 82: Throughput (GiB/s) for 256M chunk size,
Uniform distribution, and 1:10 ratio.

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
Time (hours:minutes)

15

20

25

30

35

La
te

nc
y

(s
ec

on
ds

)

ZNS 0s
Block 0s
ZNS 3.2s
Block 3.2

Figure 83: Latency for 256M chunk size, Uniform dis-
tribution, and 1:10 ratio.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Cachemap
	3.2 Zone State Manager
	3.3 Eviction

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmarks

	5 Conclusion
	6 Footnotes
	Acknowledgments
	References
	A Latency Evaluation
	B Raw Throughput and Latency data
	C Throughput and Latency graphs
	C.1 Get Latency
	C.2 Hit Latency
	C.3 Miss Latency
	C.4 Read Latency
	C.5 Write Latency
	C.6 Get Throughput
	C.7 Read Throughput
	C.8 Write Throughput

	D Hit Ratio Graphs
	E GC Experiment Graphs

