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Abstract
Traditional monitoring tools often overwhelm administrators
with excessive noise, hindering real-time detection of action-
able threats. This project introduces a real-time automated
detection system leveraging the extended Berkeley packet
filter (eBPF) for system-call tracing on Linux systems. The
captured data is analyzed by a machine learning model to
identify anomalous patterns indicative of malicious activity.
Unlike traditional methods, this approach prioritizes reducing
alert fatigue by filtering noise and delivering precise, action-
able insights. Evaluation focuses on high accuracy, low false-
positive rates, and operational efficiency, aiming to deliver
a scalable, production-ready solution that enhances Linux
system security.

1 Introduction

Existing auditing tools such as auditd [1] provide methods
to log certain system-calls and resource accesses. However,
the generality and large volume of alerts often overwhelm
administrators, making it difficult to detect and respond to ac-
tual threats [13,18]. This project aims to design an automated
detection tool that monitors Linux systems for signs of abuse.
While the tool can be categorized as an intrusion detection
system (IDS), it is distinct in focusing exclusively on system-
call monitoring, rather than relying on diverse metrics such as
network data or generic service logs commonly used in IDS
systems.

The first issue this project addresses is the excessive noise
generated by traditional monitoring tools. Detailed logs from
tools like auditd often overwhelm administrators and cause
alert fatigue, leading to critical alerts being overlooked [14].
This can lead to missed critical events and delayed responses
to threats.

The second issue is that of system modification. Previous
work has largely focused on monitoring various logs, often
requiring modification of either the monitoring application
to parse diverse log formats or the system to standardize log

formats. These approaches do not scale well across large
numbers of services and necessitate ongoing maintenance. In
contrast, this project requires no modification on individual
hosts beyond the installation of a system-call monitor.

To detect abnormal behaviors such as privilege escala-
tion, this project uses system-call tracing analyzed by a ma-
chine learning model. The complexity of modern attacks
makes them difficult to detect reliably with rule-based sys-
tems [12, 18]. Machine learning, with its ability to identify
complex patterns, is better suited to this task. For evalua-
tion, the ADFA-LD [5] dataset is used. This dataset contains
system-call traces from simulated intrusion scenarios and is a
recognized benchmark for intrusion detection systems (IDS).

The central question this project seeks to address is whether
a machine learning-based system-call monitoring tool can
effectively detect malicious behavior while reducing irrele-
vant alerts that burden administrators. The innovation of this
project lies in its targeted and automated detection of abuse
in Linux environments, aiming to reduce administrator over-
head and enable prompt responses to threats without manual
filtering.

2 Background

Detecting intrusions on Linux systems is critical for maintain-
ing security and reliability. IDS identify threats and abnormal
behavior by analyzing system metrics such as network logs,
system logs, and system-calls. Among these, system-call mon-
itoring offers a standardized and comprehensive method for
gathering metrics across an entire system.

System-calls serve as the primary interface between user ap-
plications and the operating system. By analyzing sequences
of system-calls, it is possible to detect patterns indicative of
abnormal or malicious activity. Traditional tools like auditd
provide mechanisms to monitor system-calls, but they often
generate excessive alerts and impose significant overhead.
This can overwhelm administrators and lead to alert fatigue,
where critical threats are overlooked. eBPF addresses these
challenges by enabling the execution of lightweight programs
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directly within the kernel. This allows eBPF to collect key
metrics in real time with minimal impact on system perfor-
mance. Unlike traditional tools, eBPF’s low overhead and
flexibility make it an ideal foundation for modern intrusion
detection systems. This paper leverages eBPF for system-call
monitoring, avoiding many of the drawbacks associated with
legacy approaches.

Identifying meaningful patterns in system-call data, how-
ever, requires advanced analytical methods. Machine learning
has become a cornerstone of anomaly detection, offering the
ability to uncover complex patterns that rule-based systems
struggle to detect. For sequential data like system-call traces,
models such as Long Short-Term Memory (LSTM) [10] net-
works and Temporal Convolutional Networks (TCN) [3, 11]
excel at capturing temporal dependencies. These models pro-
vide a robust framework for detecting abnormal behavior and
adapting to evolving threats.

3 Related Work

Creech and Hu [6] introduced a semantic approach to ana-
lyzing system-call patterns, demonstrating its effectiveness
in detecting anomalies. Similarly, the ADFA-LD [5] dataset,
which consists of labeled system-call traces, has become a
standard benchmark for evaluating IDS. However, many prior
implementations relied on rule-based approaches, which often
struggle to identify complex sequences of anomalous behav-
ior.

eBPF has emerged as a powerful tool for real-time mon-
itoring of Linux systems due to its low overhead and flexi-
bility. Falco [2] is a widely used intrusion detection tool for
cloud-native environments that leverages eBPF to monitor
key metrics, including system-calls and network traffic. How-
ever, unlike the machine learning approach explored in this
project, Falco relies on rule-based anomaly detection, which,
while effective, lacks the adaptability to handle complex and
evolving threats.

Machine learning has been extensively applied to anomaly
detection. While LSTM models [10] are commonly used
for sequence analysis, Bai et al. [4] demonstrated that TCN
models provide higher accuracy and better performance for
certain tasks. This project builds on these findings by compar-
ing LSTM and TCN models to determine the most effective
approach for system-call analysis.

Existing solutions also often fail to address the problem of
alert fatigue. Kearney et al. [14] investigated the severe impact
of high false positive rates on administrators and highlighted
the potential of machine learning to mitigate this issue. Their
findings emphasize the need for actionable alerts and low
false positive rates. This project aims to bridge this gap by
combining the strengths of eBPF and machine learning to
create a high-accuracy, low-noise intrusion detection system
tailored for Linux environments.

4 Solution

This project leverages eBPF [8] to efficiently capture system-
wide system-calls on Linux in real time, which are then sent
to a remote machine learning pipeline for anomaly detection.
The primary objective is to identify anomalous behavior by
analyzing patterns in sequences of system-calls using a pre-
trained machine learning model.

An eBPF program is used to monitor all system-calls
across the system. The program captures system-calls and
streams them to the machine learning pipeline, as illustrated
in Fig. 1. While this implementation does not yet include real-
time streaming directly to the model for classification, metric
recording, and notifications, it provides the necessary building
blocks for achieving full real-time alerting functionality.

Figure 1: High-level flow of the proposed system.

The eBPF monitor relies on a simple kprobe [15] han-
dler attached to the kernel for each system-call. As shown in
Fig. 2, the eBPF code uses a minimal printk function call
to emit numeric identifiers corresponding to the operation
codes (opcodes) of system-calls. System-call arguments were
intentionally excluded, as they often introduce sparsity in the
dataset [6]. Including such features risks overfitting, as the
model might assign undue importance to rare arguments.

Machine learning models analyze the collected system-
call data to detect anomalous patterns. Two models were
evaluated: LSTM and TCN. These models, pre-trained on
the ADFA-LD dataset [5], analyze sequences of system-calls
to identify deviations indicative of suspicious activity. Both
LSTM and TCN are designed for sequential data and excel
at capturing temporal dependencies. However, these models
require fixed-length inputs, necessitating the use of a sliding
window technique. This technique divides sequences into
fixed-length segments, preserving temporal information while
ensuring compatibility with the model’s input requirements.

To optimize model performance, Bayesian optimiza-
tion [17] and five-fold cross-validation were used to fine-tune
critical hyperparameters, such as window size. This approach
efficiently explored the hyperparameter search space and mit-
igated overfitting, with window size emerging as a key factor
in improving accuracy.
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1 SEC("ksyscall/read")
2 int BPF_KSYSCALL(read_entry)
3 {
4 bpf_printk("IDSTAG ,0");
5 return 0;
6 }
7

8 // ...
9

10 SEC("ksyscall/setuid")
11 int BPF_KSYSCALL(setuid_entry)
12 {
13 bpf_printk("IDSTAG ,105");
14 return 0;
15 }

Figure 2: Example eBPF syscall probes for read and setuid.

By combining the efficient data collection capabilities of
eBPF with advanced machine learning techniques, this so-
lution provides a foundation for a real-time, low-overhead
intrusion detection system capable of addressing the chal-
lenges posed by traditional monitoring tools.

5 Evaluation

The evaluation of the proposed system focuses on two primary
aspects: the effectiveness of the machine learning models in
detecting anomalies and the performance of the eBPF monitor.
These aspects are measured using a combination of accuracy,
efficiency, and resource utilization metrics. Experiments were
conducted on two systems: an Ubuntu machine with a single
core and 1GiB of RAM for the eBPF monitor, and an Arch
Linux system with 24 cores, 128GiB of RAM, and an Nvidia
GeForce RTX4090 GPU for model training and evaluation.

5.1 Machine Learning Model Performance
To assess the performance of the machine learning models, the
ADFA-LD dataset [5] was used. This dataset consists of 1,579
labeled intrusion traces, divided into 1,263 training traces and
316 testing traces (80/20 split), corresponding to 491,284
training system-calls and 134,182 testing system-calls.

The models were evaluated based on accuracy, precision,
recall, F1-score, inference time, and the rate of system-calls
processed per second. Precision was prioritized to minimize
false positives and reduce administrator fatigue, while recall
ensured that most anomalies were detected. The F1-score
provided a balanced metric by combining precision and recall.
Table 1 summarizes the performance of the TCN and LSTM
models.

While both models achieved high accuracy (roughly 95%),
they exhibited complementary strengths. The LSTM model
had higher recall and F1-score, making it slightly better at

Table 1: Model Performance Comparison
Model Accuracy Precision Recall F1-Score Inference Time Syscalls per sec

TCN 0.9494 0.9618 0.9421 0.9488 2.7315s 49,124
LSTM 0.9567 0.9425 0.9776 0.9574 8.7281s 15,373

detecting anomalies overall. However, the TCN model demon-
strated superior precision (96.18%) and significantly faster
inference time (approximately 1/3 of LSTM’s), processing
over three times as many system-calls per second. This makes
TCN particularly well-suited for high-throughput environ-
ments. Throughout the experiments typical system-call rate
was found to be in the low thousands per second, however
busy systems can execute upwards of 70,000 system-calls per
second [9]. This underscores the importance of efficiency.

Figures 3 and 4 provide confusion matrices for the two
models. The TCN model exhibited a false positive rate of
4.3%, compared to 6.4% for LSTM. In the example of the
training data, this would correspond to 885 fewer alerts the
administrator would observe as false positives. While the
LSTM model performed better on false negatives, minimizing
false positives is prioritized to reduce alert fatigue.

Figure 3: LSTM confusion matrix.

Receiver operating characteristic (ROC) curves demon-
strate how well models are able to discriminate between dif-
ferent classes. Fig. 5 shows the ROC curve of both TCN and
LSTM. They do this by plotting the true positive rate against
the false positive rate while adjusting the classification thresh-
old throughout. A perfect classifier reaches the top left corner,
yielding a true positive rate of 1 and a false positive rate of 0.
The Area Under the Curve (AUC) score quantifies how well
the model is doing at discriminating, with 1.0 being a perfect
score. Both the LSTM and TCN models demonstrate strong
discrimination with AUC scores of 0.97. This shows that the
models achieve minimal false positives while maintaining
high precision and accuracy.
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Figure 4: TCN confusion matrix.

Figure 5: ROC curve for LSTM and TCN models.

5.2 eBPF Monitor Performance

The eBPF monitor was evaluated for resource utilization
and latency. Resource usage was measured during a time-of-
check time-of-use (TOCTOU) attack exploiting CVE-2018-
0492 [7]. Table 2 compares the eBPF monitor’s overhead
against auditd. The eBPF monitor added only 0.63% to sys-
tem utilization, significantly less than the 52.04% overhead
introduced by auditd.

Additionally latency of a system-call being recorded was
measured. To do so a new kprobe was added for the open call
(Fig. 6). This kprobe triggers only from opens that originated
from a specific python script where latency is being measured.
In the python script, a timestamp is recorded followed by an
open system-call, this triggers the eBPF probe to log. Once
the eBPF log updates a new time stamp is recorded and as
a result the latency of system-call to data being logged is

Table 2: eBPF vs auditd system utilization
Tool usr sys iowait Total Net increase vs baseline

Baseline 6.36 38.22 0.02 44.56 0
eBPF 6.21 38.96 0.02 45.19 0.63
auditd 35.77 52.04 8.79 96.6 52.04

known. The results confirm that the eBPF monitor is capable
of providing real-time data without introducing significant
delays. Fig. 7 and Fig. 8 present scatterplot and histogram
analyses of latency, which averaged 18.82 microseconds.

1 SEC("ksyscall/open")
2 int BPF_KSYSCALL(open_entry ,
3 const char *pathname)
4 {
5 char comm[TASK_COMM_LEN];
6 bpf_get_current_comm(
7 &comm , sizeof(comm)
8 );
9 int cmp = __builtin_memcmp(

10 comm , "read_lat.py", 11
11 );
12 if (cmp != 0) {
13 return 0;
14 }
15 bpf_printk("READMETRIC %s", pathname);
16 return 0;
17 }

Figure 6: eBPF probe for latency measurement.

Figure 7: Scatterplot of eBPF latency measurements.

5.3 Conclusion

The evaluation demonstrates that the TCN model is better
suited for real-time anomaly detection due to its higher pre-
cision and efficiency. The eBPF monitor’s low latency and
minimal resource usage further validate its applicability in
production environments, even under high system-call rates.
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Figure 8: Histogram of eBPF latency measurements.

6 Limitations and Future work

The current work demonstrates that a TCN-based model can
effectively identify system-call sequences with high accuracy
and a low false positive rate. Additionally, the eBPF-based
monitor provides system-call sequences with low latency and
minimal overhead, making it suitable for real-time data collec-
tion. However, several components remain unimplemented,
representing key areas for future work.

6.1 Known Limitations
There are some known limitations of the evaluated system:

1. Performance Under High Load: - In environments
with high system-call rates (e.g., exceeding 50,000 calls per
second), the machine learning model may struggle to pro-
cess data in real time on hardware similar to that used in
this evaluation. While introducing a queue could help buffer
system-calls during temporary spikes, this approach may not
suffice if the load remains consistently high.

2. Inference Speed: - The current system relies on pre-
trained models with relatively high computational require-
ments. The inference time of the TCN model, while faster
than LSTM, may still require further optimization to handle
real-time demands at scale.

3. Monitoring Scope: - Monitoring all system-calls may
introduce unnecessary overhead. Reducing the scope to fo-
cus on critical system-calls could improve performance, but
further evaluation is needed to ensure that accuracy is not
compromised.

6.2 Future Work
To address these limitations and advance the system toward
a fully functional real-time notification tool, several areas of
future work are proposed:

1. Generating Real-World System-Call Traces: - A com-
prehensive collection of system-call traces simulating real-
world abnormal behavior must be developed. This involves
setting up exploitable systems and simulating attacks, such as
privilege escalation or file manipulation, that exploit known

vulnerabilities. These traces will provide a more realistic
training and testing environment compared to the ADFA-LD
dataset.

2. Cloud Deployment of Machine Learning Models: -
Deploying the machine learning model in a cloud environ-
ment would enable real-time classification of system-call se-
quences. Cloud-based deployment would allow for scalability
and facilitate integration with distributed monitoring systems.

3. Real-Time Alert Mechanism: - A mechanism to notify
administrators when abnormal behavior is detected needs to
be integrated. This could include customizable alert thresh-
olds and interfaces that prioritize actionable alerts to reduce
the risk of administrator fatigue.

4. Inference Optimization: - Optimizing the inference rate
of the machine learning models is critical for high-throughput
scenarios. Techniques such as model quantization, pruning,
or using hardware accelerators like GPUs or TPUs could
significantly reduce latency.

5. Selective System-Call Monitoring: - Reducing the num-
ber of monitored system-calls may improve system perfor-
mance. Future work should involve identifying a minimal set
of critical system-calls and evaluating whether this reduction
maintains acceptable levels of accuracy.

6. Exploration of Advanced Machine Learning Tech-
niques: - Integrating advanced techniques, such as reinforce-
ment learning, could allow the system to adapt dynamically
to evolving threats. This approach may enhance detection
capabilities, particularly in highly variable environments.

By addressing these limitations and advancing the pro-
posed future work, the system can be developed into a robust,
real-time intrusion detection solution capable of operating
effectively under high-load conditions.

7 Conclusion

This project proposes a system for detecting abnormal behav-
ior in Linux environments by leveraging eBPF for real-time
system-call tracing and a machine learning-based detection
pipeline. By utilizing a TCN model, the system achieves
high accuracy and a low false positive rate while maintain-
ing minimal latency, addressing key limitations of traditional
monitoring tools.

The integration of eBPF ensures efficient, low-overhead
data collection and processing, making the system scalable
and suitable for production environments. The use of machine
learning enables the accurate detection of malicious behavior
by learning from both benign and anomalous activity, sig-
nificantly reducing false alerts and alleviating administrator
fatigue.

The evaluation demonstrates the system’s effectiveness,
achieving accuracy rates of 95% and a low false positive rate
of 4.3% with the TCN model. The eBPF monitor further com-
plements this by providing system-call data with an average
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latency of only 18.82 microseconds and minimal resource
utilization, making it practical for real-world deployment.

However, challenges remain, particularly in handling high
system-call rates and achieving real-time notification capabil-
ities. Future work includes optimizing inference performance,
generating real-world attack traces, and integrating an alerting
mechanism to create a fully operational intrusion detection
system.

This project demonstrates the potential of combining eBPF
and machine learning to advance host-based intrusion detec-
tion systems, offering a scalable and efficient solution for
modern Linux environments. With further development, this
work could contribute significantly to improving security mon-
itoring and threat detection in real-world applications.

Availability

All source code for the projects described in the paper can be
found at

• github.com/johnramsden/ADFA-LD-Analysis

• github.com/johnramsden/ebpf-syscall-tracer

• github.com/johnramsden/exploits-pe-vuln

8 Footnotes

ChatGPT [16] was used for assisting with text re-structuring and code gener-
ation 1
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