
EVALUATION OF HYPERDIMENSIONAL COMPUTING ON PIM AND GPU, 2023 1

Evaluation of Hyperdimensional Computing on PIM
and GPU

John Ramsden

Abstract— I perform a case study of energy usage and
performance on two hardware accelerators primarily used
for parallel compute: a GPU, and a processing in memory
(PIM) accelerator. I perform experiments to investigate how
energy usage differs between the two platforms. I discover
that while PIM can show speedups over sequential CPU
workloads, it does not compete with GPUs for both perfor-
mance and energy efficiency in my workload.

I. INTRODUCTION

In traditional systems, where CPUs are connected
to main memory over a limited bandwidth channel,
there is a significant obstacle known as the “memory
wall”, or “Von Neumann bottleneck”. Processing-in-
memory (PIM) offers a solution to overcome this
challenge.

UPMEM DRAM Processing Units (DPUs) [1]
represent a novel technology that facilitates PIM.
They provide general-purpose processors where
computation occurs in close proximity to data, re-
sulting in exceptionally high memory bandwidth
and low memory access latency. These advantages
make it particularly valuable for applications that
involve extensive computational tasks with frequent
data access.

Due to the large number of DPUs accessible per
UPMEM module (64), DPUs excel when applied
to highly parallel computations. I evaluate how
DPUs compare with the processing capabilities of
modern GPUs in terms of parallel performance.
Additionally, I examine the energy usage of these
systems to facilitate a comprehensive comparison
between the two solutions.

Hyperdimensional Computing (HDC) [2] is used
in artificial intelligence to model the behavior of
a large number of neurons. It relies on high-
dimensional vectors (typically with at least 10,000
dimensions), referred to as “hypervectors”. In a
previous study [3], I conducted an evaluation of PIM
by parallelizing the workload over DPUs. Now, I
assess HDC on GPUs using a similar approach to
the DPU evaluation.

In my previous work, as well as in this paper,
I build upon PULP-HD [4]. The authors of PULP-
HD developed an application for classifying elec-
tromyography (EMG) signals into hand gestures.
Classification entails computing the Hamming dis-
tance between previously trained vectors, referred to
as associative memory, and encoded hypervectors.
Their implementation was designed for a low power
RISC accelerator, and used OpenMP for parallelism.

The HDC workload is a very computation-heavy
workload. The workload involves taking signal sam-
ples (the input of our workload) and encoding them
to compute a hypervector. This compute-intensive
workload is an extremely good candidate for a GPU,
especially because the computation can be done
completely in parallel over each sample. The HDC
workload involves 32bit logical integer operations
to manipulate hypervectors.

To compare GPU parallel performance and ben-
efits to what DPUs achieved, I developed a GPU-
based implementation using CUDA based on the
same workload used with DPUs. I evaluated the
advantages of using DPUs versus GPUs to further
investigate the benefits of near-data computing and
how it ultimately impacts performance, energy use,
and cost.

II. HARDWARE

The hardware used in my experiments consists
of a DPU system equipped with UPMEM DPUs, a
GPU system with a GeForce RTX 3070 Ti, and a
baseline system for sequential experiments with a
Xeon(R) Silver 4216 CPU.

DPU System:
• 160 GiB PIM-enabled UPMEM DRAM
• 2304 DPUs @ 450MHz
GPU System:
• GeForce RTX 3070 Ti
• @ 1.58GHz base, 1.77GHz boost
• 6144 CUDA Cores



2 EVALUATION OF HYPERDIMENSIONAL COMPUTING ON PIM AND GPU, 2023

CPU Baseline System:
• Xeon(R) Silver 4216 CPU
• @ 2.10GHz
What is immediately apparent with this hardware

is the large difference in compute capability of DPU
(450MHz, 2304 DPUs) and GPU (1.58GHz, 6144
CUDA cores). Due to the substantial difference, I
expected a significant performance difference be-
tween the two hardware platforms.

A. DPU
The DPU hardware I use has several relevant

technical details I will refer to.
DPUs have a small (64KiB) working memory

(WRAM). WRAM is used to hold stack and heap
space. A larger 64MiB slice of memory is available
to each DPU in the form of MRAM. MRAM is
seen as an external peripheral, and transfers between
WRAM and MRAM need to be made explicitly.

To hide memory latency, each DPU is equipped
with up to 24 hardware threads, referred to as
tasklets. While these tasklets cannot advance si-
multaneously, as the design follows an interleaved
multi-threading (IMT) design [3], [5], they signif-
icantly enhance performance by enabling progres-
sion when one tasklet is in a busy waiting state for
DMA.

III. PERFORMANCE

To compare performance between the two hard-
ware platforms I ran the same workload on GPU,
DPU and CPU. I then compared GPU and DPU
performance by examining the speed-up present be-
tween the baseline sequential CPU implementation
and the two hardware platforms under test.

Fig. 1. DPU and GPU speedup multiplier over sequential CPU.

Fig. 1 illustrates the comparison between both
hardware platforms and the sequential CPU. What

is immediately apparent is how strongly the GPU
scales, with it achieving up to 1700x speedup over
a sequential CPU baseline. When scaling the work-
load across the GPU I used large enough block sizes
and thread count to fully spread my workload across
the GPU so that each thread dealt with one sample.
For each of my experiments I varied the ratio of
block size to thread size until I found the optimal
combination. These block and thread sizes can be
seen in Table. I.

In order to leverage hardware resources and iden-
tify performance plateaus, I tested with varying
file sizes (corresponding to input samples). In my
previous work [3], I used data sizes large enough
to ensure each DPU had work to do, and I further
distributed this data across tasklets on each DPU

Fig. 2. DPU speedup over sequential CPU.

Fig. 3. GPU speedup over sequential CPU.

Fig. 4. GPU and DPU throughput.



JOHN RAMSDEN: GRADUATE PROJECT PROPOSAL 3

Size (MB) Time Speedup Blocks Threads
0.05 0.01 6.13 16 16
0.49 0.01 122.06 128 32
3.7 0.01 838.32 192 128
15 0.04 1,241.90 512 192
117 0.22 1,681.66 2,048 384
466 0.83 1,716.62 4,096 512
931 1.64 1,736.73 4,096 512

TABLE I
GPU WORKLOAD. SPEEDUP COMPARED TO SEQUENTIAL CPU.

Size (MiB) Time Speedup DPUs Tasklets
0.05 0.16 0.44 12 15
0.49 0.39 3.65 254 18
3.7 0.90 12.39 512 18
15 1.81 24.58 1024 18
117 4.94 74.21 2304 18
466 12.23 116.56 2304 18
931 21.99 129.78 2304 18

TABLE II
DPU WORKLOAD. SPEEDUP COMPARED TO SEQUENTIAL CPU.

by utilizing heap space stored in WRAM. DPU
and tasklet distribution can be seen in Table. II.
Although the use of heap space made memory
allocation conventional and simple, it imposed re-
strictions on space, limiting the file size to 4MiB
due to the available heap space on the DPU. For my
new experiments, I modified my original code to use
buffers stored in MRAM and to explicitly transfer
data between WRAM and MRAM as needed. This
adjustment allowed me to better utilize DPU re-
sources (where I was previously limited by WRAM)
and consequently scale to larger sample sizes, with
my tests involving file sizes as large as 1GiB.

As with the GPU workload, performance and
throughput begins to plateau with larger file sizes,
as shown in Fig. 2 and Fig. 3. The graphs showing
speedup also correspond to throughput, as shown in
Fig. 4. From this I deduce that we begin to fully
utilize the compute capabilities on the various plat-
forms. With smaller amounts of data performance
and throughput is reduced as sufficient data to reach
peak performance is not provided to the GPU or
DPU.

IV. POWER

Although performance is significantly better on
GPU, a primary concern is power usage and ef-
ficiency. DPUs have the potential to achieve bet-
ter efficiency than GPUs in completing a similar
workload over an extended period while saving on

power. There are various scenarios where this might
be acceptable or preferable. Users with throughput
requirements below that of both accelerators, but
above that of CPUs could be interested in pursuing
this trade-off of losing performance but gaining
energy efficiency. Therefore, asking whether we can
achieve better efficiency with DPUs is a relevant
question.

To measure DPU power usage, I measured the to-
tal draw from the baseboard management controller
(BMC) connected to my server housing the DPUs.
This gives me real-time power usage in watts. The
measurement I obtain of DPU power usage shows
both power draw from the regular DRAM modules
the system is using and the DPUs. To determine
how much power only the DPUs were using I also
measured an identical server’s power usage as a
baseline. The difference in power usage between
these two servers gives me the baseline power usage
of the non-DPU DRAM modules, measured to be
2W. Then, to determine power usage of DPUs
when under load I measured total power usage
again during my workload, measured to be 50W.
Therefore, subtracting non-DPU power, DPUs are
using an average of 48W during load.

Due to a limitation of sufficient access to hard-
ware on my test GPU system, I could not access
a BMC. To measure GPU power usage, I utilized
nvidia-smi to record the power draw in watts during
my workload. While this is not the ideal solution,
which would be measuring direct power usage at
the hardware level, I was unable to get hardware
access to my GPU. The GPU uses an average of
192W during execution of a workload.

Fig. 5 shows, in joules, the amount of energy used
by the different accelerators to compute our results.
In my experiments, energy usage on DPUs ranged
from as low as three times more, up to 17 times
more energy than the GPU. On average DPUs use
on average 7.5 times more energy to compute the
same results as a GPU.

So although the DPUs use less power, if we
consider the fact that their workload will run longer,
as observed in the amount of time taken for the same
workload in Fig. 1, they consume significantly more
energy overall in my use case.

V. FUTURE WORK

If this project were to be continued, several im-
provements and future work could be implemented.



4 EVALUATION OF HYPERDIMENSIONAL COMPUTING ON PIM AND GPU, 2023

Fig. 5. Joules used by DPU and GPU.

Firstly, achieving a more detailed and precise
determination of the actual power usage of compo-
nents could be pursued. This would involve directly
measuring the power draw of both GPU and DPUs
at the hardware level, providing a better understand-
ing of the difference in power usage between the
two components. Although I measured DPU power
usage at the hardware level, employing an actual
hardware meter exclusively measuring the DPU
power used during the workload would improve
accuracy.

Secondly, experiments could be done with very
large file sizes and spread across clusters of DPUs.
Doing this would make it possible to see how many
DPUs would be required to match the performance
of a GPU.

Third, while my workload plateaus, I should
conduct further investigation to ensure that I am
fully utilizing the compute capabilities of the DPUs.
I should analyze to determine the bottleneck in my
workload and identify where the limiting factor lies
in achieving better performance.

Lastly, this case study could be broadened to
include other workloads with different performance
characteristics to determine if the results found here
are common across all workloads.

VI. CONCLUSION

PIM offers a new way of accomplishing parallel
computing, and DPUs can provide a way to improve
on performance over that of a sequential CPU im-
plementation. However, their slower execution en-
gine means that they may run longer to accomplish
work similar to that of a GPU. This translates to
increased energy usage. Previous experiments [6]

have shown that DPUs can achieve better efficiency
than GPUs given the right workloads. Workloads
that PIM excel at are memory-bound workloads.
Workloads like the one examined in this paper
where they are computation-heavy, may not be able
to take advantage of increased energy efficiency that
other workloads can.

ACKNOWLEDGMENT

I thank Professor Alexandra (Sasha) Fedorova,
and Joel Nider (Department of Electrical and Com-
puter Engineering), for their advice and guidance in
this project.

AVAILABILITY

All source code for the projects
described in the paper can be found at
https://github.com/UBC-ECE-Sasha/PIM-HDC.

REFERENCES

[1] F. Devaux, “The true processing in memory accelerator,” in 2019
IEEE Hot Chips 31 Symposium (HCS), pp. 1–24, IEEE Computer
Society, 2019.

[2] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini,
A. Rahimi, and A. Sebastian, “In-memory hyperdimensional
computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337, 2020.

[3] J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard,
M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, et al., “A case
study of {Processing-in-Memory} in {off-the-Shelf} systems,”
in 2021 USENIX Annual Technical Conference (USENIX ATC
21), pp. 117–130, 2021.

[4] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini,
“Pulp-hd: Accelerating brain-inspired high-dimensional com-
puting on a parallel ultra-low power platform,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–
6, 2018.

[5] W. Weber and A. Gupta, “Exploring the benefits of multiple
hardware contexts in a multiprocessor architecture: Preliminary
results,” in The 16th Annual International Symposium on Com-
puter Architecture, pp. 273–280, May 1989.

[6] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F.
Oliveira, and O. Mutlu, “Benchmarking memory-centric comput-
ing systems: Analysis of real processing-in-memory hardware,”
in 2021 12th International Green and Sustainable Computing
Conference (IGSC), pp. 1–7, IEEE, 2021.


