
Building and evaluating disk cache, a comparison of
Rust and C

John Ramsden
University of British Columbia

Vancouver, Canada

Sam Cheng
University of British Columbia

Vancouver, Canada

ABSTRACT
The C programming language has long been the dominant
tool for system programming, prized for its low overhead and
fine-grained control. However, C also demands that program-
mers manage memory and concurrencymanually - tasks that
are notoriously error-prone and difficult to scale safely. Even
experienced developers often fall victim to subtle bugs that
compromise correctness, stability, and maintainability.
To address these challenges, the Rust programming lan-

guage introduces compile-time memory safety and owner-
ship semantics, offering a modern alternative for building
reliable systems software. In this project, we revisit a pre-
viously implemented concurrent cache written in C and re-
design it in Rust - not as a direct port, but as an exploration
of how Rust’s guarantees enable cleaner abstractions and
safer concurrency.

This case study highlights the practical trade-offs of adopt-
ing a safety-oriented language, including changes in design
structure, development effort, and runtime behavior. This
work presents a concurrent, disk-based cache as a concrete
example of how modern language features can support the
development of more robust systems software, suggesting
that rethinking core components with safety in mind may
offer lasting benefits.

1 INTRODUCTION
The C programming language provides a low-level interface
to hardware and has served the programming community
well for decades. C provides a tremendous amount of power
to software designers, allowing developers complete control
over the underlying hardware. Unfortunately, programmers
are human and make mistakes. As a result, memory safety
bugs are still considered one of the top three software er-
rors [20, 24].

The Rust programming language provides strong guaran-
tees of memory and concurrency safety at compile time by
introducing a richer type system and the concept of explicit
lifetimes and ownership (Listing. 1). These guarantees elimi-
nate many common classes of bugs found in systems code,
including data races and use-after-free errors. Compile-time
enforced ownership is particularly useful in the context of
concurrent programming, where explicit control over data
access across multiple threads can prevent race conditions

caused by concurrent modification. While the benefits that
Rust brings come with an overhead (1.77x performance over-
head on average vs C [35]) in the form of runtime checks,
given the powerful safety guarantees, we argue this overhead
is justifiable in many situations.

// Types that do not implement the 'Copy' trait
// cannot be used after move
let a = String::from("Hello world");
let b = a; // Move a to b

// The following fails to compile!!
println!("value of a: {}", a);
// The value of a was moved to b so it can
// no longer be used.

Listing 1: An example of Rust’s ownershipmodel. Since
values can only associated be with one owner in Rust,
the destructor for this code will only run once, prevent-
ing double-free errors.

We revisit our earlier implementation [23] of a disk-based
caching system designed specifically for both Zoned Names-
paces (ZNS) SSDs [7] as well as conventional SSDs. We re-
implement it from the ground up in Rust. By leveraging
Rust’s language features and stricter compile-time guaran-
tees, we aim to improve system reliability, simplify concur-
rency management, and reduce the likelihood of memory-
related bugs.
In our previous implementation, we encountered several

challenges inherent to the C programming language. C lacks
type safety, especially in terms of generic functions, which
lead to many subtle bugs at runtime. Rust offers modern tools
for safely composing modular systems, and we aim to lever-
age these features to build a more reliable and maintainable
implementation that is easier to debug.

In this project, we build a fully functional disk-based con-
current cache, leveraging Rust’s features to improve mod-
ularity, correctness, and developer productivity. We design
a modular system that allows us to swap out components
safely, such as the block-device type.

Ultimately, we explore the benefits that Rust offers, as well
as any potential drawbacks compared to the C programming
language, which remains the de facto standard in systems

2025-09-05 00:06. Page 1 of 1–30.



John Ramsden and Sam Cheng

software development. In addition to differences between
Rust and C, we make new findings related to ZNS and block-
interface devices that build upon those that we made in our
previous implementation.
This paper makes four contributions. (1) We present Ox-

Cache, a Rust re-implementation of our disk-backed, con-
current key–value cache, with a modular architecture that
cleanly separates server, device, eviction, and I/O pools (§3).
(2) We empirically compare OxCache to our prior C-based
ZNCache under identical workloads across ZNS and block-
interface SSDs, reporting throughput, latency, CPU, and
memory (§5). (3)We analyze ZNS-specificmechanisms -most
notably Zone Append - and their interaction with device-side
garbage collection, showing how offloading write-pointer
management removes per-zone lock contention. (4) We find
that OxCache markedly improves small-chunk performance
and CPU efficiency, that ZNS sustains higher throughput
when GC is active while offering little advantage in low-
throughput workloads, and that architectural choices - rather
than language alone - explain most performance deltas.

2 BACKGROUND AND RELATEDWORK
Rust is a modern systems programming language that em-
phasizes memory and type safety. Rust’s borrow checker, a
compile-time validation mechanism, prevents the occurrence
of use-after-free, double-free errors, as well as data race bugs
caused by simultaneous reads. As a result of Rust’s numerous
positive aspects, many new and existing software projects
are adopting it as the primary language of choice [1, 2]. Large
systems such as the Linux kernel [3] or Firefox [8] have also
begun incrementally adding Rust support due to the strong
guarantees the language gives. Rust’s growing adoption in
high-performance infrastructure projects makes it a natural
candidate for ZNS-aware cache designs.
Flash-based storage is often used as a backing medium

for persistent caches because it offers higher throughput
and lower latency than HDDs or networked storage. Re-
cent efforts, such as MongoDB’s exploration of local disk
caches [32], highlight the importance of reducing access costs
in production environments [34]. While slower than DRAM,
flash provides lower cost per byte and is non-volatile [25].
Zoned Namespace (ZNS) SSDs improve efficiency by re-

ducing the overhead of the traditional block-interface [7].
They enforce sequential writes within predefined regions,
called zones, which are reset at the erase-block granularity
(the smallest unit of physical erasure). This model eliminates
random in-place writes and removes the need for traditional
device-side garbage collection (GC), where the device re-
claims invalidated blocks by clearing erase blocks. As a result,
ZNS SSDs deliver more predictable performance under high

utilization and provide greater usable capacity by reducing
over-provisioning.

In addition to the sequential write constraint, ZNS devices
impose an active zone limit, specifying the maximum number
of zones that can be written concurrently. A zone is consid-
ered active once it has been written to and remains so until it
is either completely filled or explicitly closed. While ZNS pro-
vides efficiency and capacity benefits, it shifts responsibility
to the host, requiring complex zone management policies in
software. Existing cache systems such as CacheLib [9] often
adopt a region-based design in which data is first written
to memory regions and later flushed to disk in bulk [33].
This approach reduces garbage collection (GC) overhead on
the underlying flash devices and aligns naturally with the
characteristics of ZNS SSDs. Yang et al. [33] explored this
design by extending CacheLib with a ZNS-based backend.
Their work evaluated multiple eviction policies, including
ones that eliminate the need for software-managed GC by
mapping regions directly to zones in a one-to-one manner,
as well as policies that map multiple regions to a single zone.
The latter requires software-level GC but can offer lower la-
tency. Similarly, Lv et al.[18] proposed a ZNS-based caching
design in their system, “ZonedStore”. Other caching systems
do exist in the Rust ecosystem with similarities to CacheLib.
Foyer [10] is a hybrid cache library explicitly inspired by
CacheLib. While it provides support for block-interface back-
ends, it does not currently support ZNS. Our work comple-
ments such efforts by exploring ZNS-aware caching in Rust,
bridging the gap between existing designs and the needs of
zoned storage. Beyond Foyer, in-memory Rust caches such
as Moka [2] demonstrate the language’s growing adoption
for high-performance caching, though they do not target
hybrid or ZNS-aware designs.

In our previous work, we developed a C-based concurrent
cache - ZNCache [23] - to evaluate ZNS SSDs and compare
them to block-interface (conventional) SSDs. While prior
caching systems explored ZNS-based caches, we chose to
build a from-scratch system so we could examine additional
eviction and zone management policies. ZNCache is a multi-
threaded caching system that supports two types of SSD
backends: zoned and block-interface. It employs an abstrac-
tion layer that simulates zones on block-interface SSDs, en-
abling a unified logic path across both backends. We handle
eviction using a single policy, promotional eviction, which ap-
plies an LRU strategy at the zone level. When a write occurs
in a zone - which may contain multiple cacheable objects
(chunks) - the entire zone moves up within the LRU struc-
ture. This simple yet effective eviction mechanism aligns
with the constraints of zoned devices, where erasures occur
only at zone granularity. Our redesign in Rust (described
in §3) retains some of the design decisions from ZNCache -
particularly eviction policies and the abstraction layer over

2025-09-05 00:06. Page 2 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

zones - but ultimately diverges significantly in its overall
architecture.

3 METHODOLOGY
Wedesigned and implementedOxCache, a concurrent key–value
cache that leverages a remote store. Similar to ZNCache, we
introduced a simplification to reduce system complexity: al-
though the cache operates on top of a non-volatile layer, it
does not support persistence across server restarts.
Following the design of ZNCache, we define the unit of

caching as a “chunk”. Larger chunks typically improve over-
all throughput and reduce the number of requests issued to
the remote store. However, they may lead to performance
degradation when eviction rates are high. To study this trade-
off, OxCache allows configurable chunk sizes at initialization,
enabling evaluation of how varying chunk sizes affect per-
formance.

Some of the problems we faced in ZNCache involved a lack
of modularity in some of our subsystems. We struggled with
developing truly generic systems in C, leading to difficulties
when we expanded the code base and swapped out compo-
nents such as eviction policies.While we did achieve a degree
of modularity in the C system, much of it was achieved with
unsafe mechanisms or function pointer manipulation. With
OxCache we have developed a more modular system with
truly swappable components, using a more modern and safe
design taking advantage of Rust features.
Like ZNCache, OxCache supports two backends which

we evaluate: a block-interface backend, and a ZNS backend.
Unlike our previous implementation which used libc write
and read calls, we interface directly with the nvme devices
using libnvme [17]. This lower level library allows us to take
advantage of more advanced ZNS features, and we discuss it
further in §3.0.4. Our two backends operate on zones. While
block-interface SSDs do not have a concept of zones, we use
this abstraction to allow for shared logic between the two
backends. On block-interface SSDs we logically break up
data into regions, resulting in an interface resembling a ZNS
device. This is the samemethod we used in ZNCache, and this
approach has also been used in prior caching systems [9].
The high-level design of our cache is depicted in Fig. 1.

The system follows a client–server architecture in which
each incoming request is handled by a newly spawned user
thread. If the requested data is not present in the cache, the
user thread issues a query to the remote data store. The
retrieved data is immediately returned to the server and
forwarded to the client. In parallel, the data is dispatched
to a pool of writer threads responsible for persisting the
response in the cache. Once the write operation completes,
the request user thread updates the relevant data structures
and then terminates. For requests that can be satisfied by the

cache, the user thread delegates the read to a reader thread
pool, which returns the cached data to the server, and the
server relays the response to the client. The detailed design
and operation of each component will be discussed in the
following sections.

Figure 1: High level OxCache design.

We had two choices for implementing concurrency in Rust.
One option was to spawn a kernel thread per connection,
which was used in our previous implementation. Kernel
threads are managed by the operating system, which is aware
of I/O events and can preempt threads when they are blocked
by I/O. They are also well supported in C and Rust. However,
it is expensive to spawn one thread to service a connection,
and context switches between different threads are expensive
to perform. In ZNCache, we artificially limited the number of
kernel threads in order to avoid excessive resource overhead.

The second option is to utilize Rust’s stackless coroutines
(also known as user threads). These require the programmer
to annotate functions with async. This transforms the func-
tion to return a Future object which encodes and stores the
state of the computation within the function, allowing the
function to be paused and resumed. Distinct states within
the Future represent different points of computation, and
state transitions occur at user-defined yield points, where
computation can be paused and resumed. These yield points

2025-09-05 00:06. Page 3 of 1–30.



John Ramsden and Sam Cheng

are annotated with await. An executor (like a thread pool)
drives these user threads to completion, pausing at yield
points and resuming other paused user threads.
This approach avoids the heavy allocation cost of kernel

threads, and context switching between user threads is faster
as there is less state to save and restore. The downsides of
user threads are the additional complexity. User threads can-
not be used by regular functions as they must be spawned
and run by the executor. This results in “async contagion”,
where functions calling async functions must also be anno-
tated with async. User threads in Rust are also cooperatively
scheduled. Threads only yield at user-defined yield points, so
computations should be short to avoid starving other threads.
Additionally, there are restrictions for async functions ap-
pearing in traits.
Throughout our design we made heavy use user threads.

We used the popular Rust library Tokio [6] to facilitate this.
Tokio provides an easy-to-use runtime that is the de facto
standard in Rust for developing async and user thread-based
code.
OxCache is composed of several key modules (Fig. 2),

whose interfaces are defined by traits. This allows easily
swapping the internal implementation at compile time (with
generics) or runtime (with trait objects). The server module
(§3.0.1) acts as the entry point to the cache and spawns user
threads to service client requests. The RemoteStore module
(§3.0.2) provides a interface for interacting with remote data
stores. The device module (§3.0.4) abstracts underlying stor-
age devices, exposing a unified interface for both Zoned and
block-interface devices. The evictionmodule (§3.0.5) manages
cache eviction and invalidation through both periodic and
foreground eviction. The readerpool (§3.0.6) and writerpool
(§3.0.6) modules handle read and write requests, respectively.
The ZoneList module (§3.0.3) manages zone state. Finally,
the metrics module (§3.0.7) provides system observability
through logging and a Prometheus [5] exporter.

3.0.1 Server Module. The server module functions as the
core of the cache. It listens on a Unix socket for client-issued
requests, which are sent as serialized Rust structures. Rust
made this straightforward through the use of Serde [30] for
serialization, combined with built-in networking support
that provides convenient access to Unix sockets. By contrast,
our ZNCache implementation executed queries through di-
rect function calls and did not expose an external client. The
ease with which we were able to establish this robust func-
tionality stood out to us. In comparison, implementing the
same functionality in C, even with libraries is a non-trivial ef-
fort. This isn’t to say it can’t be done in C - memcached’s [14]
server code parses and frames incoming commands with a
state machine and buffer management. It builds outgoing

Figure 2: OxCache module interactions.

replies by hand using iovec arrays. These routines span thou-
sands of lines of C, with careful error handling and memory
management, underscoring that even with good libraries the
effort to match Serde and Rust’s ergonomic network stack is
far from trivial.

Once a request is received by the server, a corresponding
user thread is spawned to service the request. Within this
thread we communicate with the various components using
Rust channels [27] for message passing. This also serves as
a form of synchronization between threads.
The flow of a service request begins with deserializing

and validating the message from the client. If the requested
data is not present in our “state map” (a mapping from keys
to on-disk locations), a request is issued to the remote store,
and the corresponding data is immediately returned to the
client through the initial Unix socket. Since the data has not
yet been persisted, the state is marked as “in progress”. In
this way, if a subsequent request is made for the same data,

2025-09-05 00:06. Page 4 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

it waits for a notification that the write has completed be-
fore proceeding to read1. Data is then sent to the writerpool
through a dedicated channel. While the write is proceeding
the user thread awaits a response from the writerpool, allow-
ing other user threads to service requests. Once the data is
persisted to disk, the entry is updated in the map as complete,
and all waiters are notified. Finally, the user-level thread is
terminated.

3.0.2 RemoteStore Module. The RemoteStore module de-
fines a trait for implementing different backends such as S3.
In our design, we implement an emulated backend to support
evaluation. This backend simulates a remote store, including
optional artificial latency to mimic response times from an
object store. It generates data based on the requested key,
followed by random but deterministic bytes derived from
a seed. This design ensures we can verify data correctness
even though the actual contents are not meaningful.

3.0.3 ZoneList Module. One of the main challenges in zone
management is the active zone limit. To address this, we de-
veloped the ZoneList module, which maintains the state of
zones and provides an interface for managing their avail-
ability. The module allows a zone to be allocated if one is
available, or notifies the caller when the device is full and
eviction is required. It also supports returning zones after
use and updating the zone state appropriately when eviction
occurs.

3.0.4 Device Module. The device module provides an ab-
straction layer over both ZNS and block-interface devices.
Rust trait objects allowed us to define a common interface
and access the relevant device implementations at runtime
through dynamic dispatch [15]. This enables modularity in
a safe manner, avoiding the need for unsafe constructs that
are often required in C [21], where function pointers and
manual vtable management are commonly used. As a result,
implementing generic device structures became significantly
easier.
We implemented two device types: Zoned, representing

a ZNS device, and BlockInterface, representing a conven-
tional block-interface device. Each implementation handles
the specifics of its underlying device type.

Both of our device backends interface with their respective
hardware through libnvme. This library provides low-level

1An implication of immediately returning data to the client while keeping
the user-level thread open is the potential accumulation of a large number of
active threads. This behavior may lead to increased resource usage if many
threads remain in progress concurrently. In our experiments, we did not
observe resource consumption reaching problematic levels. Nevertheless, a
possible mitigation strategy is to introduce a user-thread limit determined
by available system resources. If this limit is reached, new requests would
be deferred until existing threads complete, thereby bounding resource
utilization.

access to NVMe devices (both ZNS and block-interface) via
the kernel’s NVMe stack. Since all of our evaluation plat-
forms (§5.1) are NVMe-based, this choice was natural. To
integrate the library, we developed Rust bindings to the un-
derlying CAPI and implemented a Rust wrapper that exposes
a high-level, safe interface.

libnvme also exposes support for ZoneAppend [37], which
we did not exploit in ZNCache. Ordinarily, when using a ZNS
device, writes within a zone are constrained by the sequen-
tial write pointer: only one thread can advance the write
pointer at a time. This typically requires careful tracking
of the write pointer and synchronization across threads to
ensure correctness. Zone Append offloads this management
to the device. Instead of specifying the write pointer explic-
itly, the host issues a Zone Append with the data, and upon
completion, the device returns the physical address where
the data was placed (i.e., the prior write pointer location). As
illustrated in Fig. 3, this mechanism not only simplifies write
pointer management but also enables multiple threads to
issue appends concurrently, each receiving the resolved ad-
dress from the device. This effectively allows a queue depth
greater than one within a single zone.

Figure 3: RegularWrites and Zone AppendWrites [37].

Both device types implement the common Device trait,
providing functions to append, read, and evict - key func-
tionality that must interface with the disk directly.

The Zoned device implementation additionally provides a
few important functions required for ZNS functionality to
reset and “finish” zones (mark them as no longer active). The
device module holds a ZoneList, and uses it to manage the
different states zones may live in.

The BlockInterface implementation provides an abstrac-
tion over a traditional block device, making it appear similar
to a ZNS SSD. We achieve this by maintaining an internal

2025-09-05 00:06. Page 5 of 1–30.



John Ramsden and Sam Cheng

ZoneList that simulates zones through logical segmentation
of the block device.

3.0.5 Eviction Module. The eviction module hosts an OS
thread which periodically (based on a predefined interval)
wakes up and performs eviction if needed. The module also
listens on a channel for foreground eviction events in case
the system completely runs out of capacity before the peri-
odic eviction can sufficiently clean. Like the device module,
the eviction module is also defined to abstract over multiple
eviction policies.
For our eviction policy we used same policy we used in

ZNCache - a simple “promotional eviction” policy. This pol-
icy was also managed in the eviction module. Promotional
eviction involves updating a zone’s position in an LRU when-
ever any chunk within it is read from or written to. This
causes the entire Zone to be “promoted". When eviction is
required, the least recently used zone is popped off the LRU,
and all of the data within it is evicted.

3.0.6 ReaderPool and WriterPool Module. The reader and
writer pools provide a simple interface for the server to
perform disk operations. Each pool spawns a configurable
number of threads and waits for requests on channels. When
a request arrives, the pool calls the device through the de-
vice module, waits for completion, and then sends the re-
sponse back to the caller waiting on the channel. This design
simplifies device access by abstracting away concurrency
management and delegating parallelism to the pools.

3.0.7 Metrics Module. The metrics module provides mecha-
nisms for exporting and recording key cache statistics such
as latency, throughput, hit ratio, and fill percentage. Us-
ing the metrics[16] library in combination with metrics
exporter prometheus [19], we can export metrics in real
time to Prometheus. This integration greatly improved our
development workflow by allowing us to visualize results
immediately and receive rapid feedback. In addition, we em-
ployed the tracing [22] library to log fine-grained metrics to
JSON files, enabling detailed post-run analysis.

4 LANGUAGE EVALUATION
Rust, being a modern systems language, offered a number
of conveniences compared to C. When implementing Ox-
Cache, we found Rust’s compile-time guarantees, extensive
ecosystem, and excellent tooling helpful to the development
process. At the same time, the additional complexity from
the borrow checker and type system caused some headaches.
We compared the development experience of ZNCache

and OxCache to contrast Rust and C in the context of cache
development. Overall, the experience of writing OxCache in
Rust was positive, and the negatives mostly stemmed from
the same strict guarantees that make Rust advantageous.

4.1 Advantages
4.1.1 Compile-time and run-time safety. Rust provides mem-
ory safety against use-after-frees and double-frees with the
borrow checker that runs at compile time. Compared to ZN-
Cache, we did not experience any segmentation faults or
memory-related bugs when running OxCache. For example,
during development, the ownership model prevented access-
related bugs, such as modifying a collection in an iterator
for-loop 2. This is impossible in Rust as values cannot be
mutated if there are immutable references to the container.

fn main() {
let mut v = vec![1, 2, 3];
for x in &v {

v.push(*x); // error: cannot borrow `v` as
mutable because it is also borrowed as
immutable by the iterator

↩→
↩→

}
}

Listing 2: Naive attempt at modifying the container
while also holding a reference to the container.

Subtle concurrency bugs were also mitigated by Rust’s
trait system. Through the Send and Sync trait [28], we were
able to ensure data races between threads did not occur,
ruling out a class of errors we previously had to consider in
ZNCache.
Rust also provides runtime safety that prevents out-of-

bounds access. If the program accessesmemory out of bounds,
it panics and prints a stack trace instead of invoking unde-
fined behaviour, which is useful for debugging.

4.1.2 Type System. Rust’s type system prevents errors, sup-
ports generic parameters, and enables OOP-style program-
ming. By being strongly typed with explicit conversions, we
were able to avoid errors caused by casting to wrong types.
As part of an effort to introduce uniform interfaces between
block-interface and zoned namespace devices in ZNCache,
we used void pointers to implement type-erased generic data
structures and algorithms. This sacrificed type safety and led
to subtle bugs at runtime. Additionally, void pointers require
a dereference to access the data, even if the generic property
was desired at compile time and the type is known.

The generic system in Rust allowed us to create type-safe
generic interfaces that were also efficient through monomor-
phization, which instantiates a unique function or struct for
each generic.

The trait system additionally supported the style of object-
oriented programming, which was a natural way to organize
structures in our codebase.

2025-09-05 00:06. Page 6 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

4.1.3 Libraries and Tooling. Cargo is the main tool for man-
aging Rust projects. Its ease of use and reasonable defaults
allowed us to get started quickly with OxCache, even de-
spite the relative lack of experience in Rust. Adding libraries
(known as crates) to the project was simple as well. We did
not have an equivalent when building ZNCache. There is
no official repository for packages, so dependencies were
sourced, downloaded, and built manually. This introduced
some complexity.
Although Rust is a relatively new language compared to

C, its ecosystem contains a large number of high-quality
and mature libraries. Notably, we utilized Tokio [6] for the
asynchronous runtime, and Bindgen [4] for interfacing with
the libnvme library. While these libraries had some amount
of learning curve, they significantly reduced the amount of
work required to develop OxCache.

4.2 Disadvantages
Although Rust does help eliminate certain classes of bugs,
reducing debugging time, it does not mean code “just works”.
On many occasions, we spent hours or even days debugging
race conditions and unexpected behavior.

4.2.1 Ergonomics. In certain cases, what may have been
intuitive and simple towrite in C requires significant thought,
and potentially unsafe code, in Rust. For example, writing a
linked list in Rust is a non-trivial endeavor due to ownership
and borrowing rules that forbid multiple mutable references
to the same node. A naive implementation that would be
straightforward in C will fail to compile in Rust (Listing 3).

This behavior reflects Rust’s philosophy of protecting the
programmer from common classes of errors. However, it
underscores that certain tasks that are straightforward in C
can become significantly more complex in Rust. Solutions
exist, but they often require more sophisticated abstractions
or patterns.

At compile time, Rust must determine the lifetime of each
variable. This requirement can complicate scenarios where
data is shared across multiple threads, since each thread
needs to know when it is safe to drop the shared value once
no references remain. The standard solution in Rust is to use
an atomic reference counter (Arc<T>). Wrapping a value in
an Arc allows it to be cloned, incrementing the reference
count each time, and then moved into additional threads.
Once the final reference is dropped, the underlying value is
deallocated. This approach is explicit and robust, but it often
results in many values being wrapped in Arc, introducing
repetitive boilerplate.
Often, our implementation needed to move a value (e.g.

within an async move block or closure) within a loop. The
natural approach is to clone the value at the point where the
value is used. However, we could not simply clone inside

struct Node {
value: i32,
next: Option<Box<Node>>,

}

impl Node {
fn push_front(self, value: i32) -> Node {

Node {
value,
next: Some(Box::new(self)), // ERROR:

ownership move issues↩→
}

}
}

fn main() {
let list = Node { value: 1, next: None };
let _list2 = list.push_front(2);
// This fails because `list` is moved and cannot

be reused.↩→
}

Listing 3: Naive attempt at implementing a linked list
in Rust, which which does not compile because of own-
ership and borrowing restrictions.

of the closure, as doing so referenced the original variable.
Instead, we needed to create a clone outside of the closure,
clone the value into the scope, and then move the cloned
value inside. This often reduced the readability of the code.

for i in 0..10 t {
let cloned_arc = arc_object.clone();
some_function(

async move {
// Compiles
cloned_arc.use();
// Does not compile
arc_object.use();

}
)

}

Listing 4: Moving a value without cloning it explicitly
fails to compile.

Rust does not support async trait objects [29]. This er-
gonomically feels awkward, since something that is a typical
behavior is unsupported. To get around this limitation we
took advantage of async-trait [13], a third-party library that
allows you to annotate a trait, enabling it to be used as an
async trait object.

2025-09-05 00:06. Page 7 of 1–30.



John Ramsden and Sam Cheng

4.2.2 Lack of multiple dispatch. One source of frustration
that we encountered was the lack of multiple dispatch, or dis-
patch based on the dynamic type of multiple objects. Specifi-
cally, our original interface of the device module exposed a
evict_chunk and evict_zonemethod, and we intended the
eviction policy to pass a zone-or-chunk value to the device,
which would have been a dynamic type. However, we could
not do this because Rust does not support pattern matching
on the dynamic types of both the evict target and device.
As a workaround, we wrapped the eviction policy and its
output as typed unions, and pattern matched inside the de-
vice function. While this method worked, it required some
boilerplate.

// Intended behaviour which fails to compile:
trait Zoned {

fn evict(&self, evict_target: Chunk, ...);
fn evict(&self, evict_target: Zone, ...);

}

trait BlockInterface {
fn evict(&self, evict_target: Chunk, ...);
fn evict(&self, evict_target: Zone, ...);

}

// Callsite
let evict_target: dyn EvictTarget =

evict_policy.get_evict_target();↩→
device.evict(evict_target);

Listing 5: The intended code that we wanted to write if
Rust had multiple dispatch.

5 PERFORMANCE EVALUATION
The goal of our performance evaluation is to compare re-
sults with those from ZNCache. We repeat the same exper-
iments and examine the differences, highlighting any new
findings. Unlike our first paper, we also evaluate how our
design choices, re-architected implementation, and the lan-
guage switch influence performance. As with ZNCache, we
run the experiments:

(1) Parameter Eval (§5.2.1): Evaluate how the different
SSDs compare under workloads with varying param-
eters, such as data distribution and chunk size.

(2) GC Eval (§5.2.2): Determine the effects of device-
side GC on block-interface SSDs for cache workloads,
and how device-side GC impacts throughput and tail-
latency.

Alongside these experiments, we also compare CPU and
RAM overheads between the two implementations.

Our goal is not to claim that changing languages directly
improves or degrades performance. The two implementa-
tions are not directly comparable, as they differ significantly
in design. In OxCache, we applied lessons learned from ZN-
Cache and introduced several improvements. Thus, our eval-
uation is intended to show how the new implementation
performs relative to the earlier ZNCache design. In addition,
it provides an opportunity to uncover new insights into the
behavior of ZNS and block-interface SSDs.

5.1 Experimental Setup
Our server consists of an Intel Server R2208WFTZSR with,
256GiB of RAM, and two 16 core Xeon(R) Silver 4216 CPU,
running at 2.10 GHz running Ubuntu 24.04 with Linux 6.14.0.
Importantly this differs from our previous experiments in
that we transitioned from Ubuntu 22.04 with Linux 6.8.0.
While the minor kernel change is not optimal, this is the
only platform difference, and we expect the variance to be
minimal.
We evaluate a ZNS SSD and a block-interface SSD. The

underlying hardware of the two devices is identical, with the
distinction lying solely in the firmware, as confirmed by the
vendor.

• ZNS SSD: (ZN540, Western Digital): 950.789GiB, 904
zones

• Block-interface SSD: (SN540,WesternDigital): 894.3GiB
Their capacities differ because the block-interface SSD

must reserve space for device-side garbage collection, a re-
quirement not present on ZNS SSDs. As a result, the ZNS
configuration exposes more usable capacity to the system.

We conducted all experiments using themq-deadline sched-
uler on the ZNS SSD and the none scheduler on the block-
interface SSD.2. This configuration mirrors our prior ex-
periments: mq-deadline was required because it enforces
strict I/O ordering [26], which is necessary to maintain write
pointer consistency on ZNS devices under Linux 6.8.0. Con-
versely, the none scheduler is preferred for block-interface
SSDs, and is the default in Ubuntu 22.04 and 24.04, due to its
lower latency and higher IOPS under a simple FIFO model
where strict ordering is unnecessary [31]. As of Linux 6.10.0,
however, the introduction of Zone Write Plugging [36] has
eliminated the need for a scheduler to enforce write ordering
on ZNS devices.

5.2 Benchmarks
We use the same benchmarks from ZNCache, executing work-
loads with Zipfian and uniform random distributions for
cache access patterns through a YCSB-based generator [11].

2While we also tested the none scheduler on ZNS devices, performance
differences were negligible

2025-09-05 00:06. Page 8 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

We use the same Zipfian parameter of 0.99, which is consid-
ered reasonable for database and cache workloads [12].

On both caches, workloads consist of executing a sequence
of cache calls defined by experimental parameters. We pre-
generate workloads representing chunk accesses and execute
them from start to finish while recording relevant metrics.
We bin results over 60-second intervals to improve readabil-
ity in graphs. For raw calculations (Appendix B) no binning
is applied. We vary three parameters: chunk size, distribution,
and ratio, where ratio denotes the cache-to-workload size ra-
tio. All benchmarks are executed with 64 threads (matching
the number of available hyperthreads) to maximize achiev-
able bandwidth.

For all experiments, we use our emulated backend (§3.0.2)
as the remote store to eliminate variability in results, follow-
ing the same method as in ZNCache. We derive artificial la-
tencies from real-world measurements (Appendix A), which
provide expected average request times based on chunk size.
The method of executing queries differs substantially be-

tween the two systems. In ZNCache, there is no dedicated
client; queries are issued directly through function calls
within themain server. By contrast,OxCache has a client–server
architecture, with requests sent over a Unix socket and re-
sponses returned through the same channel. To approximate
ZNCache’s concurrency, we use a multi-threaded client that
opens 64 simultaneous connections, analogous to the 64
threads issuing function calls in ZNCache. Given the archi-
tectural differences, the two systems are not directly compa-
rable. Nevertheless, we minimize effects of any differences
wherever possible.

5.2.1 Parameter Evaluation. Our parameter evaluation ex-
ecutes workloads on the cache while varying a broad set
of parameters. To enable direct comparison with ZNCache,
we use the same parameter settings, evaluate the result-
ing differences, and highlight new findings. We test two
extremes of chunk size - 64KiB and 512MiB. As in the orig-
inal ZNCache evaluation, we artificially restrict cache size
and total data transfer to ensure one-to-one comparability.
For 512MiB chunks, we use 200 zones; for 64KiB workloads,
where throughput is lower and experiments run significantly
longer, we reduce the cache size to 40 zones. Each workload
executes a fixed amount of I/O corresponding to cache re-
quests: 3TiB for 512MiB chunks and 600GiB for 64KiB chunks.
We scale the two I/O volumes to maintain consistency rela-
tive to cache size: the 64KiB configuration uses 40 zones (20%
of the 200 zones used for 512MiB), and therefore performs
20% of the total I/O (600GiB). We evaluate two cache-to-
workload ratios, 1:2 and 1:10, to capture scenarios of low and
high eviction pressure, respectively. The low-eviction case re-
flects a common deployment where a large cache is expected
to yield a high hit ratio, while the high-eviction case stresses

the eviction policy. In the latter scenario, the increased write
volume is also more likely to trigger SSD garbage collection.
Prior to each experiment, we run a conditioning phase to
return devices to a baseline state, following the approach
of Björling et al. [7]. This preconditioning simulates a disk
under sustained use, and produces internal fragmentation.
Our findings broadly mirror those of our initial experi-

ments, but with key differences, particularly for small chunk
sizes and resource usage. In ZNCache, 64KiB workloads ex-
hibited significantly lower throughput compared to 512MiB
workloads. As noted in our previous paper, this was an is-
sue warranting further investigation and could likely be
addressed through improved design. In OxCache, we achieve
markedly better throughput for small chunks. For example,
as shown in Figs. 4 and 5, our best-performing workload
- a Zipfian distribution with a 1:2 ratio - reaches average
throughputs of 0.825 GiB/s (ZNS) and 0.789 GiB/s (block)
in OxCache, compared to only 0.173 GiB/s (ZNS) and 0.178
GiB/s (block) in ZNCache. We attribute these improvements
to several design changes.

Figure 4: OxCache throughput (GiB/s) comparing ZNS
and block-interface (Block) SSDs

Figure 5: ZNCache throughput (GiB/s) comparing ZNS
and block-interface (Block) SSDs

In ZNCache, writes required locking at the zone level to
maintain write pointer consistency. This was especially prob-
lematic for small chunk sizes, where frequent, successive

2025-09-05 00:06. Page 9 of 1–30.



John Ramsden and Sam Cheng

writes caused lock contention and reduced parallelism. Main-
taining correct and consistent write pointer tracking also
introduced significant CPU overhead. In contrast, OxCache
leverages Zone Append, which allows safe writes to ZNS
devices without explicit locking, since the device internally
manages the write pointer. This eliminates much of the over-
head of manual write pointer tracking and reduces the work
required to maintain state. The effect is evident in CPU uti-
lization (Appendix D): for example, OxCache averages 273%
CPU, and 710% CPU utilization for 64KiB and 512MiB re-
spectively, while ZNCache averages 4897% CPU, and 3988%
CPU for 64KiB and 512MiB. This stark difference highlights
the high internal bookkeeping costs in ZNCache compared
to the lighter-weight design of OxCache.

As discussed earlier (§3.0.1), our use of user-level threads
lets us service many concurrent requests. Because each re-
quest requires a buffer in RAM to hold the requested data,
this design can result in high memory usage3 (Appendix D).
Across workloads, OxCache averages 429MiB and 50GiB of
RAM for 64KiB and 512MiB chunks, respectively, while ZN-
Cache averages 254MiB and 7.5GiB for the same workloads
(Appendix D). By contrast, ZNCache imposes a fixed buffer
cap equal to the number of threads specified at startup, which
naturally bounds the number of active buffers.

Figure 6: OxCache Get Latency (ms) comparing ZNS
and block-interface (Block) SSDs

As demonstrated in Figs. 6 and 7, OxCache exhibits la-
tency and throughput trends similar to ZNCache. For large
chunk sizes, ZNS shows more consistent performance, with
average latency 43.00% lower than the block-interface device
(compared to ZNCache’s 50.58% reduction), and significantly
reduced tail latency (on average 84.78% lower, versus ZN-
Cache’s 55.87%).

Throughput results follow the same pattern, as shown in
Figs. 4 and 5. ZNS consistently achieves higher throughput
than block devices and sustains its peak throughput after
the initial warmup phase. Compared to ZNCache, OxCache
3We could reduce peak memory usage by enforcing a limit on the number
of active user threads, thereby restricting the number of simultaneously
allocated buffers.

Figure 7: ZNCache Get Latency (ms), end to end latency
including hits and misses comparing ZNS and block-
interface (Block) SSDs

achieves comparable throughput at large chunk sizes (on
average 2.7% lower).

As shown in Fig. 8, our overall conclusions regarding ZNS
versus block remain unchanged. ZNS again delivers consis-
tently high throughput, whereas the block-interface exhibits
an initial ramp-up to the hardware’s expected maximum,
followed by a sharp decline attributable to GC. A similar
pattern appears in latency, with an initial spike coinciding
with GC activity (Fig. 9).

Figure 8: OxCache Get Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

Figure 9: OxCache disk Write latency (ms) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

As with ZNCache, throughput gradually increases even af-
ter the hit ratio plateaus. We attribute this effect to the device
defragmenting itself during the run due to preconditioning,
and investigate it further in §5.2.2.

Small chunk performance highlights the most pronounced
differences between the two implementations. With 64KiB

2025-09-05 00:06. Page 10 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

chunks on ZNCache, throughput was substantially lower
than with large chunks, with the best-performing configura-
tion (Zipfian, ratio 1:2) reaching averages of 0.173GiB/s and
0.178GiB/s for ZNS and block-interface devices, respectively.
By contrast, OxCache achieves averages of 0.825GiB/s and
0.790GiB/s for ZNS and block, representing increases of 376%
and 344%.
As in our previous experiments, we observe far less vari-

ance between device types when using small chunks, with
ZNS and block-interface exhibiting nearly identical behav-
ior. This reinforces the observation that for workloads with
inherently low throughput, such as those using small chunk
sizes, ZNS does not necessarily provide a performance ad-
vantage over block-interface SSDs. Even with this increased
throughput, we did not observe GC; if present, results might
differ. We examine this in more detail in §5.2.2.

5.2.2 GC Eval. As with ZNCache, to evaluate the effects
of GC we execute a uniform random 1:10 workload with a
chunk size of 256MiB rather than 512MiB, chosen to intro-
duce greater internal fragmentation. Based on our previous
work, this slightly smaller chunk size increases the GC rate
on block-interface devices. This workload is most likely to
trigger GC, due to both the high eviction rate and uniform
access pattern.

To place additional stress on the devices, we remove4 the
artificial latency associated with accessing the remote data
store, thereby increasing the read and write rate. We also
issue a TRIM command prior to the workload, informing
the device that all blocks are no longer in use and may be
erased. This places the device in a clean state where no GC
should initially be present. Once the disk fills to capacity, we
expect device-side GC to begin. This setup contrasts with
the preconditioned experiments, where the device starts in a
utilized state and we expect GC almost immediately.
As in ZNCache, we observe clear signs of garbage col-

lection (GC): once the block-interface device first reaches
full capacity, throughput drops sharply and remains below
the pre-GC plateau (Fig. 10). Removing the artificial latency
cap does not improve performance on the ZNS device, sug-
gesting that the workload was not latency-bound under the
cap. In contrast, in ZNCache (Fig. 11), removing the cap al-
lowed throughput to increase. This suggestsOxCache is more
efficient, reaching higher throughput. ZNCache consumes
substantially more CPU resources (Appendix D), suggest-
ing that its performance difference may stem from being
CPU-bound.

4We discovered unexpected behavior where eliminating the artificial latency
reduced throughput. We suspect this is related to contention effects. For
our experiments, we set the latency to 1000 microseconds (effectively 0s).
We plan to explore this phenomenon in future work.

Figure 10: OxCache throughput with GC (1:10 ratio,
uniform random, 256MiB chunk, 6TiB of I/Oworkload)
comparing artificial latency (3.2s) with no artificial
latency (0s)

Figure 11: ZNCache throughput with GC (1:10 ratio,
uniform random, 256MiB chunk, 6TiB of I/Oworkload)
comparing artificial latency (3.2s) with no artificial
latency (0s)

6 FUTUREWORK
We identify several directions for future work.

(1) Eviction policies.Wewill implement additional eviction
policies to measure the impact of software-managed GC on
ZNS and compare it directly with hardware-managed GC
on block-interface SSDs, clarifying trade-offs across device
types. (2) Thread bounding. Because many user-level threads
can be active concurrently, we will introduce a bound on
active threads. (3) Latency-cap anomaly. In our GC evaluation
(§5.2.2), removing the artificial latency cap unexpectedly
reduced throughput. We will investigate the root cause and
evaluate mitigation strategies.

7 CONCLUSION
We confirm our prior finding that ZNS devices outperform
block-interface SSDs when GC is present. Our Rust reimple-
mentation improved small-chunk performance and yielded
new insight into GC behavior, while reaffirming that when
workloads do not saturate disk capacity, ZNS does not offer
clear advantages. Although the transition from C to Rust had
a steep learning curve, Rust’s type system and safety guar-
antees helped us produce a more robust, maintainable cache
that ultimately outperformed our earlier implementation.

This comparison is not one-to-one, since OxCache incor-
porates architectural improvements absent from ZNCache,

2025-09-05 00:06. Page 11 of 1–30.



John Ramsden and Sam Cheng

and results may vary across platforms. Nevertheless, our
experience indicates that Rust provides tangible benefits for
building reliable storage systems without prohibitive perfor-
mance costs.

AVAILABILITY
All source code for the projects described in the paper can
be found at https://github.com/johnramsden/OxCache. Raw
experiment data is available upon request.

8 FOOTNOTES
Generative AI was used to assist with text restructuring and limited code
synthesis.

ACKNOWLEDGMENTS
This work was done under the supervision of Professor
Alexandra (Sasha) Fedorova Department of Electrical and
Computer Engineering, University of British Columbia.

REFERENCES
[1] [n. d.]. Fish Shell. https://fishshell.com Accessed: 2025-09-03.
[2] [n. d.]. Moka. https://github.com/moka-rs/moka Accessed: 2025-09-

03.
[3] [n. d.]. Rust for Linux. https://rust-for-linux.com Accessed: 2025-09-

03.
[4] 2025. Bindgen. https://github.com/rust-lang/rust-bindgen Accessed:

September 3, 2025.
[5] 2025. Prometheus Monitoring System. https://prometheus.io/ Accessed:

August 27, 2025.
[6] 2025. Tokio: An Asynchronous Runtime for the Rust Programming

Language. https://tokio.rs/ Accessed: August 27, 2025.
[7] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. 2021.
{ZNS}: Avoiding the block interface tax for flash-based {SSDs}
(USENIX’21).

[8] Dmitry Bushev. [n. d.]. How much Rust in Firefox? https://4e6.github.
io/firefox-lang-stats Accessed: 2025-09-03.

[9] CacheLib. 2025. CacheLib – Pluggable caching engine to build and
scale high performance cache services. https://cachelib.org. Accessed:
2025-02-07.

[10] Foyer Contributors. 2025. Foyer: Hybrid cache library for Rust. https:
//github.com/foyer-rs/foyer Accessed: 2025-09-03.

[11] Brian Cooper. 2019. YCSB. https://github.com/brianfrankcooper/
YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/
main/java/site/ycsb/generator/ZipfianGenerator.java Accessed:
February 10, 2025.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

[13] David Tolnay. 2025. async-trait: Define async functions in traits. https:
//crates.io/crates/async-trait Accessed: 2025-09-01.

[14] Brad Fitzpatrick and contributors. 2003.memcached: a distributedmem-
ory object caching system. https://github.com/memcached/memcached
Accessed: 2025-08-29.

[15] Steve Klabnik and Carol Nichols. 2025. The Rust Programming Lan-
guage. No Starch Press. https://doc.rust-lang.org/book/ch17-02-trait-
objects.html Accessed: 2025-09-01.

[16] Toby Lawrence and contributors. 2025. metrics: a metrics instrumenta-
tion library for Rust. https://github.com/metrics-rs/metrics Accessed:
2025-08-29.

[17] linux nvme. 2025. libnvme: C Library for NVM Express on Linux. https:
//github.com/linux-nvme/libnvme Accessed: August 27, 2025.

[18] Yanqi Lv, Peiquan Jin, Xiaoliang Wang, Ruicheng Liu, Liming Fang,
Yuanjin Lin, and Kuankuan Guo. 2022. Zonedstore: A concurrent
zns-aware cache system for cloud data storage. IEEE.

[19] metrics-rs contributors. 2025. metrics-exporter-prometheus: Prometheus
exporter for the Rust metrics library. https://github.com/metrics-rs/
metrics/tree/main/metrics-exporter-prometheus Accessed: 2025-08-
29.

[20] MITRE Corporation. 2024. CWE Top 25 Most Dangerous Software
Weaknesses. https://cwe.mitre.org/top25/ Accessed: 2025-04-30.

[21] Neil Brown. 2011. The Linux Kernel: Object-Oriented Design Patterns
in the Kernel. https://lwn.net/Articles/444910/

[22] Tokio project contributors. 2025. tracing: Application-level tracing for
Rust. https://github.com/tokio-rs/tracing Accessed: 2025-08-29.

[23] John Ramsden and Sam Cheng. 2025. ZNCache - ZNS Workload
Analysis. https://github.com/johnramsden/ZNCache. University of
British Columbia.

[24] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok:
Eternal war in memory. In 2013 IEEE Symposium on Security and
Privacy. IEEE.

[25] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
2015. {RIPQ}: Advanced photo caching on flash for facebook. In 13th
USENIX Conference on File and Storage Technologies (FAST 15).

[26] Nick Tehrany and Animesh Trivedi. 2022. Understanding nvme zoned
namespace (zns) flash ssd storage devices. (2022).

[27] The Rust Programming Language Team. 2025. Message Passing in
Rust. https://doc.rust-lang.org/book/ch16-02-message-passing.html
Accessed: 2025-08-28.

[28] The Rust Project Developers. 2025. Rust Reference: Send and
Sync. https://doc.rust-lang.org/reference/special-types-and-traits.
html#send-and-sync Accessed: 2025-09-01.

[29] The Rust Project Developers. 2025. Rust Reference: Traits and
async functions. https://doc.rust-lang.org/reference/items/traits.html#
async-functions-in-traits Accessed: 2025-09-01.

[30] Erick Tryzelaar, David Tolnay, and Contributors. 2025. Serde: Serial-
ization Framework for Rust. https://serde.rs/ Accessed: August 27,
2025.

[31] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altipar-
mak. 2023. Do we still need IO schedulers for low-latency disks?. In
Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems.

[32] WiredTiger Project. 2025. Chunk Cache in WiredTiger.
https://github.com/wiredtiger/wiredtiger.github.com/blob/
062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.
html Accessed: February 10, 2025.

[33] Chongzhuo Yang, Zhang Cao, Chang Guo, Ming Zhao, and Zhichao
Cao. 2024. Can ZNS SSDs be Better Storage Devices for Persistent
Cache? (HotStorage ’24).

[34] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Anal-
ysis of Hundreds of In-memory Key-value Cache Clusters at Twitter.
ACM Transactions on Storage (2021).

[35] Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu.
[n. d.]. Towards understanding the runtime performance of rust. In
Proceedings of the 37th IEEE/ACM International Conference on Auto-
mated Software Engineering.

[36] Zoned Storage Project. 2025. Write Ordering Control. https://
zonedstorage.io/docs/linux/sched#zone-write-plugging. Accessed:
2025-04-17.

2025-09-05 00:06. Page 12 of 1–30.

https://github.com/johnramsden/OxCache
https://fishshell.com
https://github.com/moka-rs/moka
https://rust-for-linux.com
https://github.com/rust-lang/rust-bindgen
https://prometheus.io/
https://tokio.rs/
https://4e6.github.io/firefox-lang-stats
https://4e6.github.io/firefox-lang-stats
https://cachelib.org
https://github.com/foyer-rs/foyer
https://github.com/foyer-rs/foyer
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://github.com/brianfrankcooper/YCSB/blob/ce3eb9ce51c84ee9e236998cdd2cefaeb96798a8/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
https://crates.io/crates/async-trait
https://crates.io/crates/async-trait
https://github.com/memcached/memcached
https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://github.com/metrics-rs/metrics
https://github.com/linux-nvme/libnvme
https://github.com/linux-nvme/libnvme
https://github.com/metrics-rs/metrics/tree/main/metrics-exporter-prometheus
https://github.com/metrics-rs/metrics/tree/main/metrics-exporter-prometheus
https://cwe.mitre.org/top25/
https://lwn.net/Articles/444910/
https://github.com/tokio-rs/tracing
https://github.com/johnramsden/ZNCache
https://doc.rust-lang.org/book/ch16-02-message-passing.html
https://doc.rust-lang.org/reference/special-types-and-traits.html#send-and-sync
https://doc.rust-lang.org/reference/special-types-and-traits.html#send-and-sync
https://doc.rust-lang.org/reference/items/traits.html#async-functions-in-traits
https://doc.rust-lang.org/reference/items/traits.html#async-functions-in-traits
https://serde.rs/
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://github.com/wiredtiger/wiredtiger.github.com/blob/062e0eb42ed1dc8777f8cf1b8651ca9eb6ac33ce/develop/chunkcache.html
https://zonedstorage.io/docs/linux/sched#zone-write-plugging
https://zonedstorage.io/docs/linux/sched#zone-write-plugging


Building and evaluating disk cache, a comparison of Rust and C

[37] Zoned Storage Project. 2025. Zoned Storage Devices. https://
zonedstorage.io/docs/introduction/zoned-storage#zone-append. Ac-
cessed: 2025-08-28.

A LATENCY EVALUATION
The following latency evaluation was completed on US West
(Oregon) us-west-2, 11ms latency, accessed from the Univer-
sity of British Columbia campus.

Raw data: https://github.com/johnramsden/ZNCache/blob/
f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_
TRANSFER_EVAL.md

Table 1: 64KiB Chunk size

Metric Seconds Microseconds

Mean latency 0.0406 40632
Geometric mean latency 0.0377 37745
Minimum latency 0.0282 28245
Maximum latency 0.3845 384506
Standard deviation 0.0350 35049

Table 2: 256MiB Chunk size

Metric Seconds Microseconds

Mean latency 3.2096 3209583
Geometric mean latency 3.1314 3131383
Minimum latency 2.6974 2697422
Maximum latency 7.7637 7763737
Standard deviation 0.8617 861663

Table 3: 512MiB Chunk size

Metric Seconds Microseconds

Mean latency 5.4138 5413781
Geometric mean latency 5.4129 5412910
Minimum latency 5.3835 5383455
Maximum latency 6.0413 6041250
Standard deviation 0.1003 100301

Table 4: 1GiB Chunk size

Metric Seconds Microseconds

Mean latency 11.5242 11524248
Geometric mean latency 11.5075 11507539
Minimum latency 11.3097 11309672
Maximum latency 16.5442 16544165
Standard deviation 0.6793 679328

B LATENCY AND THROUGHPUT TABLES
The following tables show distributions for latency and through-
put throughout workloads.

Name Mean (ms) P99 (ms)
ZNS-512M-UNIF-2 20548.26 (+62.50%) 43584.92 (+78.91%)
Block-512M-UNIF-2 54793.77 206632.99
ZNS-512M-UNIF-10 27342.11 (+48.56%) 37412.80 (+84.82%)
Block-512M-UNIF-10 53156.16 246416.68
ZNS-512M-ZIPF-2 17239.12 (+36.66%) 25178.34 (+89.37%)
Block-512M-ZIPF-2 27218.81 236752.36
ZNS-512M-ZIPF-10 18509.96 (+52.31%) 35350.96 (+86.03%)
Block-512M-ZIPF-10 38810.68 252975.99
ZNS-64K-UNIF-2 22.02 (+0.09%) 43.22 (-0.02%)
Block-64K-UNIF-2 22.04 43.21
ZNS-64K-UNIF-10 38.59 (-0.14%) 44.22 (+0.05%)
Block-64K-UNIF-10 38.53 44.24
ZNS-64K-ZIPF-2 4.84 (+3.33%) 42.16 (+0.07%)
Block-64K-ZIPF-2 5.00 42.19
ZNS-64K-ZIPF-10 9.98 (+4.81%) 42.49 (+0.10%)
Block-64K-ZIPF-10 10.49 42.53

Table 5: Latency comparison results for Gets

Name Mean P99
ZNS-512M-UNIF-2 1.60 GiB/s (+167.58%) 1.74 GiB/s (+41.83%)
Block-512M-UNIF-2 611.46 MiB/s 1.23 GiB/s
ZNS-512M-UNIF-10 1.20 GiB/s (+87.37%) 1.30 GiB/s (+12.30%)
Block-512M-UNIF-10 655.61 MiB/s 1.16 GiB/s
ZNS-512M-ZIPF-2 1.80 GiB/s (+53.51%) 1.89 GiB/s (+8.15%)
Block-512M-ZIPF-2 1.17 GiB/s 1.75 GiB/s
ZNS-512M-ZIPF-10 1.74 GiB/s (+105.13%) 1.98 GiB/s (+16.63%)
Block-512M-ZIPF-10 868.63 MiB/s 1.70 GiB/s
ZNS-64K-UNIF-2 181.22 MiB/s (+0.10%) 191.06 MiB/s (+0.14%)
Block-64K-UNIF-2 181.04 MiB/s 190.80 MiB/s
ZNS-64K-UNIF-10 103.56 MiB/s (-0.15%) 104.22 MiB/s (-0.18%)
Block-64K-UNIF-10 103.72 MiB/s 104.42 MiB/s
ZNS-64K-ZIPF-2 824.99 MiB/s (+4.47%) 1.09 GiB/s (+4.91%)
Block-64K-ZIPF-2 789.73 MiB/s 1.04 GiB/s
ZNS-64K-ZIPF-10 398.29 MiB/s (+4.99%) 435.08 MiB/s (+2.37%)
Block-64K-ZIPF-10 379.36 MiB/s 425.00 MiB/s
Table 6: Throughput comparison results for Gets

C GRAPHS
The following section has detailed graphs for various metrics:

(1) Get latency: End-to-end latency including both hits
and misses for the entire path required to “get” an
object from the cache

(2) Hit latency: The entire code path executed when a
cache hit occurs (includes read latency)

2025-09-05 00:06. Page 13 of 1–30.

https://zonedstorage.io/docs/introduction/zoned-storage#zone-append
https://zonedstorage.io/docs/introduction/zoned-storage#zone-append
https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md
https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md
https://github.com/johnramsden/ZNCache/blob/f37149387436f91f27136464e22bc156fd44a865/docs/REMOTE_TRANSFER_EVAL.md


John Ramsden and Sam Cheng

(3) Miss latency: The entire code path executed when a
cache miss occurs (includes write latency)

(4) Read latency: Disk IO read latency
(5) Write latency: Disk IO write latency
(6) Get throughput: Complete cache throughput (eg. user

requests a 512MiB chunk, this is 512MiB of data con-
tributing to throughput)

(7) Read throughput: Throughput contributions from
only disk reads

(8) Write throughput: Throughput contributions from
only disk writes

(9) Hit ratio: Cache hit ratio throughout a run

C.1 Get Latency

Figure 12: Cache Get latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 13: Cache Get latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 14: Cache Get latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 15: Cache Get latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 16: Cache Get latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

Figure 17: Cache Get latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 18: Cache Get latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 19: Cache Get latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

2025-09-05 00:06. Page 14 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

C.2 Hit Latency

Figure 20: Cache Hit latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 21: Cache Hit latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 22: Cache Hit latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 23: Cache Hit latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 24: Cache Hit latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

Figure 25: Cache Hit latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 26: Cache Hit latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 27: Cache Hit latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

2025-09-05 00:06. Page 15 of 1–30.



John Ramsden and Sam Cheng

C.3 Miss Latency

Figure 28: CacheMiss latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 29: CacheMiss latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 30: CacheMiss latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 31: CacheMiss latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 32: Cache Miss latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

Figure 33: Cache Miss latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 34: Cache Miss latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 35: Cache Miss latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

2025-09-05 00:06. Page 16 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

C.4 Read Latency

Figure 36: Disk Read latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 37: Disk Read latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 38: Disk Read latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 39: Disk Read latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 40: Disk Read latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

Figure 41: Disk Read latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 42: Disk Read latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 43: Disk Read latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

2025-09-05 00:06. Page 17 of 1–30.



John Ramsden and Sam Cheng

C.5 Write Latency

Figure 44: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 45: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:2 ratio.

Figure 46: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 47: DiskWrite latency (ms) for 512M chunk size,
Uniform distribution, and 1:10 ratio.

Figure 48: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 49: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 50: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 51: DiskWrite latency (ms) for 512M chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 52: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

2025-09-05 00:06. Page 18 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Figure 53: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:2 ratio.

Figure 54: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 55: Disk Write latency (ms) for 64K chunk size,
Uniform distribution, and 1:10 ratio.

Figure 56: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 57: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:2 ratio.

Figure 58: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

Figure 59: Disk Write latency (ms) for 64K chunk size,
Zipfian distribution, and 1:10 ratio.

C.6 Get Throughput

Figure 60: Cache Get Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

Figure 61: Cache Get Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

2025-09-05 00:06. Page 19 of 1–30.



John Ramsden and Sam Cheng

Figure 62: Cache Get Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

Figure 63: Cache Get Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

Figure 64: CacheGet Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:2 ratio.

Figure 65: CacheGet Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:10 ratio.

Figure 66: CacheGet Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:2 ratio.

Figure 67: CacheGet Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:10 ratio.

C.7 Read Throughput

Figure 68: Disk Read Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

Figure 69: Disk Read Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

Figure 70: Disk Read Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

2025-09-05 00:06. Page 20 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Figure 71: Disk Read Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

Figure 72: DiskRead Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:2 ratio.

Figure 73: DiskRead Throughput (GiB/s) for 64K chunk
size, Uniform distribution, and 1:10 ratio.

Figure 74: DiskRead Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:2 ratio.

Figure 75: DiskRead Throughput (GiB/s) for 64K chunk
size, Zipfian distribution, and 1:10 ratio.

C.8 Write Throughput

Figure 76: Disk Write Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:2 ratio.

Figure 77: Disk Write Throughput (GiB/s) for 512M
chunk size, Uniform distribution, and 1:10 ratio.

Figure 78: Disk Write Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:2 ratio.

Figure 79: Disk Write Throughput (GiB/s) for 512M
chunk size, Zipfian distribution, and 1:10 ratio.

2025-09-05 00:06. Page 21 of 1–30.



John Ramsden and Sam Cheng

Figure 80: Disk Write Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:2 ratio.

Figure 81: Disk Write Throughput (GiB/s) for 64K
chunk size, Uniform distribution, and 1:10 ratio.

Figure 82: Disk Write Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:2 ratio.

Figure 83: Disk Write Throughput (GiB/s) for 64K
chunk size, Zipfian distribution, and 1:10 ratio.

C.9 Hit Ratio

Figure 84: Cache Hit Ratio for 512M chunk size, Uni-
form distribution, and 1:2 ratio.

Figure 85: Cache Hit Ratio for 512M chunk size, Uni-
form distribution, and 1:10 ratio.

Figure 86: CacheHit Ratio for 512M chunk size, Zipfian
distribution, and 1:2 ratio.

Figure 87: CacheHit Ratio for 512M chunk size, Zipfian
distribution, and 1:10 ratio.

2025-09-05 00:06. Page 22 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Figure 88: CacheHit Ratio for 64K chunk size, Uniform
distribution, and 1:2 ratio.

Figure 89: CacheHit Ratio for 64K chunk size, Uniform
distribution, and 1:10 ratio.

Figure 90: Cache Hit Ratio for 64K chunk size, Zipfian
distribution, and 1:2 ratio.

Figure 91: Cache Hit Ratio for 64K chunk size, Zipfian
distribution, and 1:10 ratio.

D RESOURCE USE
The following tables show distributions for CPU and RAM
usage throughout workloads.

Table 7: OxCache Average Resource Usage - ZNSChunk
Size 536870912

Metric Value
CPU Usage (%) 709.78
Memory Usage (GiB) 50.166

Table 8: OxCache Average Resource Usage - ZNSChunk
Size 65536

Metric Value
CPU Usage (%) 272.61
Memory Usage (GiB) 0.419

Table 9: OxCache Average Resource Usage - Block-
interface Chunk Size 536870912

Metric Value
CPU Usage (%) 336.09
Memory Usage (GiB) 57.190

Table 10: OxCache Average Resource Usage - Block-
interface Chunk Size 65536

Metric Value
CPU Usage (%) 269.37
Memory Usage (GiB) 0.520

Table 11: ZNCache Average Resource Usage - ZNS
Chunk Size 536870912

Metric Value
CPU Usage (%) 3988.35
Memory Usage (GiB) 7.472

Table 12: ZNCache Average Resource Usage - ZNS
Chunk Size 65536

Metric Value
CPU Usage (%) 4896.73
Memory Usage (GiB) 0.248

Table 13: ZNCache Average Resource Usage - Block-
interface Chunk Size 536870912

Metric Value
CPU Usage (%) 3723.64
Memory Usage (GiB) 10.256

2025-09-05 00:06. Page 23 of 1–30.



John Ramsden and Sam Cheng

Table 14: ZNCache Average Resource Usage - Block-
interface Chunk Size 65536

Metric Value
CPU Usage (%) 4890.90
Memory Usage (GiB) 0.235

Table 15: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Uniform, Ratio: 10)

Metric Value (%)
Max 6385.00
Mean 576.98
Median 559.00
Std Dev 377.03
95th Percentile 1046.00
99th Percentile 1238.00

Table 16: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Uniform, Ratio:
10)

Metric Value (GiB)
Max 86.994
Mean 58.059
Median 57.972
Std Dev 3.557
95th Percentile 61.898
99th Percentile 63.426

Table 17: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Zipfian, Ratio: 10)

Metric Value (%)
Max 4808.00
Mean 821.03
Median 757.50
Std Dev 466.10
95th Percentile 1631.00
99th Percentile 2410.00

Table 18: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Zipfian, Ratio:
10)

Metric Value (GiB)
Max 62.089
Mean 46.468
Median 46.207
Std Dev 6.101
95th Percentile 56.048
99th Percentile 59.319

Table 19: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Uniform, Ratio: 2)

Metric Value (%)
Max 235.00
Mean 204.43
Median 213.00
Std Dev 23.93
95th Percentile 224.00
99th Percentile 228.00

Table 20: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Uniform, Ratio: 2)

Metric Value (GiB)
Max 0.682
Mean 0.506
Median 0.548
Std Dev 0.152
95th Percentile 0.675
99th Percentile 0.682

Table 21: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Uniform, Ratio: 2)

Metric Value (%)
Max 6201.00
Mean 746.48
Median 676.00
Std Dev 490.69
95th Percentile 1526.00
99th Percentile 2041.00

2025-09-05 00:06. Page 24 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Table 22: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Uniform, Ratio:
2)

Metric Value (GiB)
Max 84.663
Mean 54.695
Median 54.894
Std Dev 5.699
95th Percentile 61.389
99th Percentile 65.400

Table 23: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Zipfian, Ratio: 2)

Metric Value (%)
Max 4181.00
Mean 694.64
Median 667.33
Std Dev 287.96
95th Percentile 1114.00
99th Percentile 1347.00

Table 24: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Zipfian, Ratio: 2)

Metric Value (GiB)
Max 55.104
Mean 41.441
Median 41.514
Std Dev 4.178
95th Percentile 45.980
99th Percentile 49.933

Table 25: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Zipfian, Ratio: 10)

Metric Value (%)
Max 382.00
Mean 321.62
Median 324.00
Std Dev 29.53
95th Percentile 358.00
99th Percentile 371.00

Table 26: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Zipfian, Ratio: 10)

Metric Value (GiB)
Max 0.477
Mean 0.356
Median 0.406
Std Dev 0.118
95th Percentile 0.474
99th Percentile 0.477

Table 27: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Uniform, Ratio: 10)

Metric Value (%)
Max 144.00
Mean 131.18
Median 132.00
Std Dev 5.53
95th Percentile 139.00
99th Percentile 141.00

Table 28: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Uniform, Ratio: 10)

Metric Value (GiB)
Max 0.698
Mean 0.558
Median 0.622
Std Dev 0.139
95th Percentile 0.687
99th Percentile 0.697

Table 29: OxCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Zipfian, Ratio: 2)

Metric Value (%)
Max 606.00
Mean 433.20
Median 447.50
Std Dev 89.56
95th Percentile 545.00
99th Percentile 573.00

2025-09-05 00:06. Page 25 of 1–30.



John Ramsden and Sam Cheng

Table 30: OxCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Zipfian, Ratio: 2)

Metric Value (GiB)
Max 0.394
Mean 0.255
Median 0.274
Std Dev 0.094
95th Percentile 0.390
99th Percentile 0.394

Table 31: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 10)

Metric Value (%)
Max 145.00
Mean 128.29
Median 129.00
Std Dev 4.73
95th Percentile 135.00
99th Percentile 137.00

Table 32: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 10)

Metric Value (GiB)
Max 0.885
Mean 0.790
Median 0.861
Std Dev 0.158
95th Percentile 0.884
99th Percentile 0.884

Table 33: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 10)

Metric Value (%)
Max 6400.00
Mean 301.69
Median 240.00
Std Dev 321.47
95th Percentile 783.00
99th Percentile 1025.00

Table 34: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 10)

Metric Value (GiB)
Max 87.597
Mean 60.682
Median 61.020
Std Dev 3.230
95th Percentile 64.023
99th Percentile 65.712

Table 35: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 2)

Metric Value (%)
Max 613.00
Mean 430.17
Median 456.00
Std Dev 86.46
95th Percentile 540.00
99th Percentile 579.00

Table 36: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 2)

Metric Value (GiB)
Max 0.388
Mean 0.252
Median 0.259
Std Dev 0.095
95th Percentile 0.384
99th Percentile 0.388

Table 37: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 2)

Metric Value (%)
Max 4199.00
Mean 455.93
Median 396.00
Std Dev 302.44
95th Percentile 997.00
99th Percentile 1376.00

2025-09-05 00:06. Page 26 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Table 38: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 2)

Metric Value (GiB)
Max 62.841
Mean 49.142
Median 46.535
Std Dev 8.140
95th Percentile 59.982
99th Percentile 61.013

Table 39: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 10)

Metric Value (%)
Max 362.00
Mean 317.02
Median 321.00
Std Dev 27.30
95th Percentile 348.00
99th Percentile 356.00

Table 40: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 10)

Metric Value (GiB)
Max 0.483
Mean 0.365
Median 0.416
Std Dev 0.116
95th Percentile 0.478
99th Percentile 0.482

Table 41: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 2)

Metric Value (%)
Max 6202.00
Mean 244.93
Median 183.00
Std Dev 269.34
95th Percentile 616.00
99th Percentile 892.00

Table 42: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 2)

Metric Value (GiB)
Max 80.824
Mean 59.332
Median 59.837
Std Dev 4.172
95th Percentile 62.237
99th Percentile 63.366

Table 43: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 10)

Metric Value (%)
Max 4808.00
Mean 341.80
Median 291.50
Std Dev 281.82
95th Percentile 797.00
99th Percentile 1178.00

Table 44: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 10)

Metric Value (GiB)
Max 70.125
Mean 59.605
Median 60.594
Std Dev 5.103
95th Percentile 63.527
99th Percentile 64.072

Table 45: OxCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 2)

Metric Value (%)
Max 232.00
Mean 202.01
Median 209.00
Std Dev 22.32
95th Percentile 220.00
99th Percentile 225.00

2025-09-05 00:06. Page 27 of 1–30.



John Ramsden and Sam Cheng

Table 46: OxCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 2)

Metric Value (GiB)
Max 0.925
Mean 0.671
Median 0.736
Std Dev 0.207
95th Percentile 0.916
99th Percentile 0.925

Table 47: ZNCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Zipfian, Ratio: 10)

Metric Value (%)
Max 5097.00
Mean 3833.31
Median 4231.00
Std Dev 1105.56
95th Percentile 4833.00
99th Percentile 4928.00

Table 48: ZNCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Zipfian, Ratio:
10)

Metric Value (GiB)
Max 11.675
Mean 7.655
Median 7.500
Std Dev 1.169
95th Percentile 9.293
99th Percentile 10.169

Table 49: ZNCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Uniform, Ratio: 10)

Metric Value (%)
Max 4952.53
Mean 4904.34
Median 4907.00
Std Dev 61.98
95th Percentile 4910.00
99th Percentile 4911.00

Table 50: ZNCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Uniform, Ratio: 10)

Metric Value (GiB)
Max 0.552
Mean 0.357
Median 0.365
Std Dev 0.149
95th Percentile 0.543
99th Percentile 0.550

Table 51: ZNCache CPU Usage Statistics - ZNS (Chunk
Size: 536870912, Distribution: Uniform, Ratio: 10)

Metric Value (%)
Max 5728.00
Mean 4143.40
Median 4368.00
Std Dev 874.01
95th Percentile 5006.00
99th Percentile 5062.00

Table 52: ZNCache Memory Usage Statistics - ZNS
(Chunk Size: 536870912, Distribution: Uniform, Ratio:
10)

Metric Value (GiB)
Max 9.000
Mean 7.289
Median 7.392
Std Dev 0.506
95th Percentile 7.503
99th Percentile 7.827

Table 53: ZNCache CPU Usage Statistics - ZNS (Chunk
Size: 65536, Distribution: Zipfian, Ratio: 10)

Metric Value (%)
Max 4917.00
Mean 4889.12
Median 4892.00
Std Dev 76.50
95th Percentile 4903.00
99th Percentile 4911.00

2025-09-05 00:06. Page 28 of 1–30.



Building and evaluating disk cache, a comparison of Rust and C

Table 54: ZNCache Memory Usage Statistics - ZNS
(Chunk Size: 65536, Distribution: Zipfian, Ratio: 10)

Metric Value (GiB)
Max 0.210
Mean 0.139
Median 0.153
Std Dev 0.052
95th Percentile 0.205
99th Percentile 0.209

Table 55: ZNCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 10)

Metric Value (%)
Max 4723.00
Mean 2762.79
Median 3213.00
Std Dev 1353.20
95th Percentile 4353.00
99th Percentile 4521.00

Table 56: ZNCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Zipfian,
Ratio: 10)

Metric Value (GiB)
Max 22.825
Mean 12.780
Median 11.677
Std Dev 4.005
95th Percentile 20.128
99th Percentile 21.741

Table 57: ZNCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 10)

Metric Value (%)
Max 4915.00
Mean 4900.81
Median 4905.00
Std Dev 11.25
95th Percentile 4911.00
99th Percentile 4912.00

Table 58: ZNCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Uniform,
Ratio: 10)

Metric Value (GiB)
Max 0.645
Mean 0.335
Median 0.337
Std Dev 0.179
95th Percentile 0.621
99th Percentile 0.641

Table 59: ZNCache CPU Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 10)

Metric Value (%)
Max 5480.00
Mean 4684.49
Median 4759.00
Std Dev 503.40
95th Percentile 4982.00
99th Percentile 5064.00

Table 60: ZNCache Memory Usage Statistics - Block-
interface (Chunk Size: 536870912, Distribution: Uni-
form, Ratio: 10)

Metric Value (GiB)
Max 9.754
Mean 7.732
Median 7.699
Std Dev 0.603
95th Percentile 8.544
99th Percentile 9.057

Table 61: ZNCache CPU Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 10)

Metric Value (%)
Max 4922.00
Mean 4880.99
Median 4881.00
Std Dev 18.98
95th Percentile 4912.00
99th Percentile 4918.00

2025-09-05 00:06. Page 29 of 1–30.



John Ramsden and Sam Cheng

Table 62: ZNCache Memory Usage Statistics - Block-
interface (Chunk Size: 65536, Distribution: Zipfian, Ra-
tio: 10)

Metric Value (GiB)
Max 0.232
Mean 0.135
Median 0.130
Std Dev 0.060
95th Percentile 0.225
99th Percentile 0.232

2025-09-05 00:06. Page 30 of 1–30.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Language Evaluation
	4.1 Advantages
	4.2 Disadvantages

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Benchmarks

	6 Future Work
	7 Conclusion
	8 Footnotes
	Acknowledgments
	References
	A Latency Evaluation
	B Latency and Throughput Tables
	C Graphs
	C.1 Get Latency
	C.2 Hit Latency
	C.3 Miss Latency
	C.4 Read Latency
	C.5 Write Latency
	C.6 Get Throughput
	C.7 Read Throughput
	C.8 Write Throughput
	C.9 Hit Ratio

	D Resource Use

